On the continuity of correspondences on sets of measures with restricted marginals

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Bergin, James
dc.date.accessioned 2008-10-23T14:18:25Z
dc.date.available 2008-10-23T14:18:25Z
dc.date.copyright Copyright Springer Verlag 1999 en
dc.date.issued 1999-02
dc.identifier.citation Economic Theory en
dc.identifier.issn 1432-0479
dc.identifier.uri http://hdl.handle.net/10197/610
dc.description.abstract Consider the set of probability measures on a product space with the property that all have the same marginal distributions on the coordinate spaces. This set may be viewed as a correspondence, when the marginal distributions are varied. Here, it is shown that this correspondence is continuous. Numerous problems in economics involve optimization over a space of measures where one or more marginal distributions is given. Thus, for this class of problem, Berge's theorem of the maximum is applicable: the set of optimizers is upper-hemicontinuous and the value of the optimal solution varies with the parameters (marginals) continuously. en
dc.format.extent 4304 bytes
dc.format.mimetype application/pdf
dc.language.iso en en
dc.publisher Springer en
dc.subject Measures on product spaces with restricted marginals en
dc.subject Continuity of correspondences on spaces of measures en
dc.subject.classification C60 en
dc.subject.classification C61 en
dc.subject.lcsh Set theory en
dc.subject.lcsh Probability measures en
dc.subject.lcsh Distribution (Probability theory) en
dc.title On the continuity of correspondences on sets of measures with restricted marginals en
dc.type Journal Article en
dc.internal.authorurl James Bergin (web page) en
dc.internal.authorurl http://geary.ucd.ie/Table/About-Items/?ref=8236662 en
dc.internal.authorcontactother Email: berginj@ucd.ie; Tel: +353 1 716 4618 en
dc.internal.authorid UCD0002 en
dc.internal.availability Full text not available en
dc.internal.webversions Publisher's version en
dc.internal.webversions http://dx.doi.org/10.1007/s001990050265 en
dc.status Peer reviewed en
dc.identifier.volume 13 en
dc.identifier.issue 2 en
dc.identifier.startpage 471 en
dc.identifier.endpage 481 en
dc.identifier.doi 10.1007/s001990050265
dc.neeo.contributor Bergin|James|aut|UCD0002


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. For other possible restrictions on use please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.

If you are a publisher or author and have copyright concerns for any item, please email research.repository@ucd.ie and the item will be withdrawn immediately. The author or person responsible for depositing the article will be contacted within one business day.

Search Research Repository


Advanced Search

Browse