Positivity properties for the clamped plate boundary problem on the ellipse and strip

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Render, Hermann
dc.contributor.author Ghergu, Marius
dc.date.accessioned 2012-09-25T15:07:04Z
dc.date.available 2012-09-25T15:07:04Z
dc.date.copyright 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim en
dc.date.issued 2012-06
dc.identifier.citation Mathematische Nachrichten en
dc.identifier.uri http://hdl.handle.net/10197/3820
dc.description.abstract The positivity preserving property for the biharmonic operator with Dirichlet boundary condition is investigated. We discuss here the case where the domain is an ellipse (that may degenerate to a strip) and the data is a polynomial function. We provide various conditions for which the positivity is preserved. en
dc.description.sponsorship Not applicable en
dc.language.iso en en
dc.publisher Wiley en
dc.rights This is the author's version of the following article: Render, H. and Ghergu, M. (2012), Positivity properties for the clamped plate boundary problem on the ellipse and strip. Math. Nachr., 285: 1052–1062. doi: 10.1002/mana.201100045 en
dc.subject Biharmonic operator en
dc.subject Fischer operator en
dc.subject Positive polynomial data en
dc.subject Positive solutions en
dc.subject.lcsh Biharmonic equations en
dc.subject.lcsh Polynomials en
dc.title Positivity properties for the clamped plate boundary problem on the ellipse and strip en
dc.type Journal Article en
dc.internal.availability Full text available en
dc.status Peer reviewed en
dc.identifier.volume 285 en
dc.identifier.issue 8-9 en
dc.identifier.startpage 1052 en
dc.identifier.endpage 1062 en
dc.identifier.doi 10.1002/mana.201100045
dc.neeo.contributor Render|Hermann|aut|
dc.neeo.contributor Ghergu|Marius|aut|
dc.description.admin da, ke, ab - kpw27/6/12 en

This item appears in the following Collection(s)

Show simple item record

This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. For other possible restrictions on use please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.

If you are a publisher or author and have copyright concerns for any item, please email research.repository@ucd.ie and the item will be withdrawn immediately. The author or person responsible for depositing the article will be contacted within one business day.

Search Research Repository

Advanced Search