Bounds on the levels of composition algebras

DSpace/Manakin Repository

Show simple item record O'Shea, James 2010-10-13T16:08:08Z 2010-10-13T16:08:08Z Royal Irish Academy en 2010
dc.identifier.citation Mathematical Proceedings of the Royal Irish Academy en
dc.identifier.issn 1393-7197 (Print)
dc.identifier.issn 2009-0021 (Online)
dc.description.abstract Certain families of quaternion and octonion algebras are conjectured to be of level and sublevel n. A proof of this conjecture is offered in the case where n is a power of two. Hoffmann's proof of the existence of infinitely many new values for the level of a quaternion algebra is generalised and adapted. Alternative constructions of quaternion and octonion algebras are introduced and justified in the case where n is a multiple of a two power. en
dc.description.sponsorship Irish Research Council for Science, Engineering and Technology en
dc.description.sponsorship Other funder en
dc.format.extent 161820 bytes
dc.format.mimetype application/pdf
dc.language.iso en en
dc.publisher Royal Irish Academy en
dc.subject Quadratic form en
dc.subject Function field en
dc.subject Level en
dc.subject Sublevel en
dc.subject Quaternion algebra en
dc.subject Octonion algebra en
dc.subject.lcsh Forms, Quadratic en
dc.subject.lcsh Quaternions en
dc.subject.lcsh Cayley numbers (Algebra) en
dc.title Bounds on the levels of composition algebras en
dc.type Journal Article en
dc.internal.availability Full text available en
dc.internal.webversions en
dc.status Peer reviewed en
dc.identifier.volume 110 en
dc.identifier.startpage 21 en
dc.identifier.endpage 30 en
dc.identifier.doi 10.3318/PRIA.2010.110.1.21
dc.neeo.contributor O'Shea|James|aut| en
dc.description.othersponsorship European RTN network "Algebraic K-Theory, Linear Algebraic Groups and Related Structures" en
dc.description.admin ke SB. 11/10/2010 en

Files in this item

This item appears in the following Collection(s)

Show simple item record

This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. For other possible restrictions on use please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.

If you are a publisher or author and have copyright concerns for any item, please email and the item will be withdrawn immediately. The author or person responsible for depositing the article will be contacted within one business day.

Search Research Repository

Advanced Search