The dynamics of non-divergent flow on a rotating sphere are described by the conservation of absolute vorticity. The
analytical study of the non-linear barotropic vorticity equation is greatly facilitated by the expansion ...
Many recent approaches to modeling social networks have focussed on embedding
the actors in a latent “social space”. Links are more likely for actors that are
close in social space than for actors that are distant in ...
We study the dynamics of a spherical rigid body that rocks and rolls on a plane
under the effect of gravity. The distribution of mass is non-uniform and the
centre of mass does not coincide with the geometric centre. The ...
Let
L
be a linear differential operator with constant coefficients of order
n
and complex eigenvalues
λ
0
,...,λ
n
. Assume that the set
U
n
of all solutions of the
equation
Lf
= 0 is closed under complex ...
We study the existence and shape preserving properties of a generalized
Bernstein operator
B
n
fixing a strictly positive function
f
0
, and a second function
f
1
such
that
f
1
/f
0
is strictly increasing, ...
In this note, we look at homotopes of Jordan triple structures and show that, following a renorming, an isotope of a JB*-triple is also a JB*-triple. We also provide a proof of the Russo—Dye theorem for JBW*-triples.
We prove that for any infinite field F, the map H-3(SLn(F), Z) -> H-3(SLn+1 (F), Z) is an isomorphism for all n >= 3. When n = 2 the cokernel of this map is naturally isomorphic to 2. K-3(M) (F), where K-n(M)(F) is the nth ...
Let C be a Cartan-factor having arbitrary dimension dimC. It is shown that the group Inn(C) of inner automorphisms of C acts transitively on the manifold Ur(C) of tripotents with finite rank r in C. This extends results ...
A grade of membership (GoM) model is an individual level mixture model which allows individuals have partial membership of the groups that characterize a population. A GoM model for rank data is developed to model the ...