<table>
<thead>
<tr>
<th>Title</th>
<th>Simvastatin Treatment Preserves Synaptic Plasticity in APPswe/PS1dE9 Mice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Métais, Charles; Brennan, Kathryn; Mably, Alex J.; Scott, Michael; Walsh, Dominic; Herron, Caroline</td>
</tr>
<tr>
<td>Publication date</td>
<td>2014</td>
</tr>
<tr>
<td>Publication information</td>
<td>Journal of Alzheimer's Disease, 39 (2): 315-329</td>
</tr>
<tr>
<td>Publisher</td>
<td>IOS Press</td>
</tr>
<tr>
<td>Item record/more information</td>
<td>http://hdl.handle.net/10197/6799</td>
</tr>
<tr>
<td>Publisher's version (DOI)</td>
<td>http://dx.doi.org/10.3233/JAD-130257</td>
</tr>
</tbody>
</table>
Simvastatin Treatment Preserves Synaptic Plasticity in AβPPswe/ PS1dE9 Mice

Charles Météis, Kathryn Brennan, Alex J. Mably, Michael Scott, Dominic M. Walsh and Caroline E. Herron

School of Biomolecular and Biomedical Sciences, Conway Institute, University College Dublin, Belfield, Dublin, Ireland

Accepted 11 September 2013

Abstract. Epidemiological evidence suggests that chronic treatment with simvastatin may protect against the development of Alzheimer’s disease (AD), but as yet it is unclear how this effect is mediated. Extensive data also indicates that the amyloid-/protein (Aβ) plays a central role in the disease process, and it has been suggested that the protective effects of simvastatin may be mediated by reducing Aβ production or by counteracting the toxic effects of Aβ. Accordingly, using the AβPPswe/PS1dE9 mouse model of AD, we investigated the effects of simvastatin on long-term potentiation (LTP), amyloid biology, and two key kinases involved in Aβ-mediated toxicity. Since burgeoning data indicate that both fibrillar and non-fibrillar forms of Aβ play a prominent role in AD pathogenesis, we were careful to investigate the effects of simvastatin on three biochemically distinct pools of Aβ. In untreated AβPPswe/PS1dE9 mice, there was a dramatic and significant increase in the levels of water-soluble Aβ between 6 and 8 months, but this remained constant between 8 and 18 months. In contrast, the concentrations of detergent-soluble and formic acid (FA)-soluble Aβ species increased across all ages examined, thus demonstrating that while amyloid deposition continued, the levels of water-soluble Aβ remained relatively constant. LTP was normal at 6 months, but was significantly impaired at 8 and 18 months. Importantly, a diet supplemented with 0.04% simvastatin for one month (at 7 months) positively affected synaptic plasticity in AβPPswe/PS1dE9 mice and did not significantly alter levels of water-soluble, detergent-soluble, or FA-soluble Aβ, but did increase phosphorylation of both Akt and GSK-3, while tau and tau phosphorylation were unaltered. These results indicate that the protective effects of simvastatin may be mediated by maintaining signaling pathways that help to protect and rescue LTP.

Keywords: Alzheimer’s disease, amyloid-β, hippocampus, long-term potentiation, statin

INTRODUCTION

Statins are HMG-CoA reductase inhibitors used to treat hypercholesterolemia, and it is known that some statins, including simvastatin (SV), can penetrate the blood-brain barrier [1, 2]. There have been numerous reports on the pleiotropic effects of statins. Studies report that SV has anti-inflammatory properties [3] and can also improve learning and memory performance in rodents [4, 5]. Several epidemiological investigations have also shown beneficial outcomes of statin treatment in stroke, dementia, and Parkinson’s disease [6–10]. Controversy still exists as to the potential therapeutic benefit of statin treatment for Alzheimer’s disease (AD). Positive effects have been reported by some groups [7, 8, 11, 12], while other studies have reported little if any effect [10, 13–15]. AD is the most common neurodegenerative disease in our aging population. Two characteristic hallmarks of AD are plaques of aggregated amyloid β-protein (Aβ) and neurofibrillary tangles formed from hyper-
phosphorylated tau. The so-called “amyloid cascade hypothesis” [16, 17] appears to best explain what we know about AD pathogenesis and has dominated molecular research on the disease for the past two decades. The foundation of the this hypothesis rests on evidence that increased production or decreased clearance of Aβ leads to the generation of toxic assemblies which initiate a complex cascade of molecular events that culminate in frank dementia [18]. Aβ is a normal physiological product which is generated from a precursor protein, the amyloid-b protein precursor (AβPP) [19]. Extensive evidence indicates that Aβ production is strongly influenced by cholesterol [20], with cholesterol depletion reducing Aβ production [21] and increased intracellular cholesterol levels increasing Aβ production [22]. The precise molecular mechanism by which cholesterol mediates these effects are not yet fully understood, but it seems likely that this involves the modulation of proteases which process AβPP [23, 24], trafficking of AβPP [25–27], and regulation of Aβ degradation [28]. Cholesterol has been shown to bind ε9, the transmembrane carboxyterminal domain of AβPP which may alter AβPP processing to promote amyloidogenesis [29]. Cholesterol may also influence the aggregation of Aβ [30], the process by which toxic assemblies of Aβ are formed.

Long-term potentiation (LTP) is a long-term activity dependent enhancement of synaptic strength that is believed to be involved in learning and memory processes and is exquisitely sensitive to toxic assemblies of Aβ [31]. Several signaling pathways have been implicated in the induction and/or the maintenance of LTP. Akt has been linked to neuronal survival mechanisms and synaptic plasticity processes. Recently, Aβ has been shown to disrupt LTP through a signaling pathway that involves Akt [32]. GSK3 is also known to be a regulatory element for LTP and long-term depression (LTD) [33]. GSK3 expression is upregulated in the hippocampus of AD patients [34] and has been reported to co-localize with dystrophic neurites and neurofibrillary tangles [35–37]. We investigated the effect of chronic SV treatment (40 mg/kg/d) on LTP in a mouse model of AD using extracellular field potential recordings in the CA1 region of the hippocampus. Levels of Aβ were assessed by immunoprecipitation and also to examine Akt and GSK3. Our results show that chronic SV treatment rescued the LTP deficits in 8 month old AβPP/Swe/PS1dE9 mice and that this involved increased phosphorylation of both Akt and GSK3, but did not significantly alter the levels of water-soluble, detergent-soluble, or formic acid (FA)-soluble forms of Aβ.

MATERIALS AND METHODS

Reagents and antibodies

Unless specified, chemicals were from Sigma-Aldrich (Sigma-Aldrich Ireland Ltd., Dublin, Ireland). Synthetic Aβ1-42 was purchased from the Keck laboratory. Aβ1-42 was synthesized and purified by Dr. James I. Elliott at Yale University (New Haven, CT). Peptide masses and purities were determined by electrospray ionization trap mass spectrometry and reverse-phase HPLC, respectively.

6E10, a monoclonal antibody to residues 1–16 of Aβ, was from Covance. 88k is a rabbit anti-Aβ polyclonal antibody raised to aggregated synthetic Aβ1-42 and incapable of immunoprecipitating Aβ from culture medium, cerebrospinal fluid and human brain extracts and has been described previously [38]. Simvastatin (SV) was purchased fromMolekula Ltd, Shaftesbury, Dorset, U.K.

Animals and diet

Double transgenic AβPP/Swe/PS1dE9 mice and age-matched control littermates bred on a C57BL/6 background were used throughout this study. All experiments were carried out in accordance to guidelines and under license from the Department of Health, Ireland. Experiments were conducted on mice aged 6, 8, or 18 months. Mice were housed in the Conway Institute animal facility with a dark/light cycle of 12 h and fed with chow and water ad libitum. Founder wild type C57BL/6 females and heterozygous AβPP/Swe/PS1dE9 males were obtained from Jackson Laboratories. AβPP/Swe/PS1dE9 mice have two transgenes (humanized mouse mutant AβPP and PS1) inserted at a single locus under the control of a prion promoter [39, 40]. These mice express a MoHu/AβPP/Swe, transgene allowing the mice to secrete human Aβ peptide. The AβPP Swedish mutation increases the total amount of Aβ produced and the PS1 sequence lacks Exon 9 (dE9) which increases the relative amount of Aβ40 compared to Aβ42 [39, 40]. To study the effects of chronic SV treatment, AβPP/Swe/PS1dE9 mice and age-matched control littermates (male and female balanced groups) were fed with chow pellets supplemented with 0.04% SV, representing a daily dose of 400 mg/kg-1 of food [41]. A pilot study was conducted in which C57BL/6 mice
were fed with either a control diet or SV supplemented diet. We found that the addition of SV did not alter the mean food intake or body weight between groups (data included in Supplementary Material). At 7 months, our groups of experimental animals were given the supplemented diet for one month. Electrophysiologically experiments were then conducted to compare LTP, and extracts of brain tissue were used to examine Aβ content and Akt/GSK-3 levels.

Genotyping procedures

DNA was extracted from ear tissue samples and the presence of transgenes confirmed by PCR. For further details, see Supplementary Material.

Measurement of plasma cholesterol levels

Blood samples were collected immediately following euthanasia, placed on ice, and spun at 3080 g for 10 min at 4 °C. Supernatant was collected, frozen in liquid nitrogen, and stored at −80 °C for later cholesterol assay. Plasma cholesterol levels were measured using a kit according to the manufacturer’s recommendations (Randos Laboratories, Ireland).

Serial extraction of mouse brain tissue for analysis of Aβ

This was done essentially as described previously [31] and the Aβ-1-42 levels were measured using a kit according to the manufacturer’s recommendations (Randos Laboratories, Ireland). Mice were fed with either a control diet or SV supplemented diet. We found that the addition of SV did not alter the mean food intake or body weight between groups (data included in Supplementary Material). At 7 months, our groups of experimental animals were given the supplemented diet for one month. Electrophysiologically experiments were then conducted to compare LTP, and extracts of brain tissue were used to examine Aβ content and Akt/GSK-3 levels.

Measurement of plasma cholesterol levels

Blood samples were collected immediately following euthanasia, placed on ice, and spun at 3080 g for 10 min at 4 °C. Supernatant was collected, frozen in liquid nitrogen, and stored at −80 °C for later cholesterol assay. Plasma cholesterol levels were measured using a kit according to the manufacturer’s recommendations (Randos Laboratories, Ireland).

Serial extraction of mouse brain tissue for analysis of Aβ

This was done essentially as described previously [31]. The cerebellum and frontal cortex were removed and brain samples frozen in liquid nitrogen and stored at −80 °C. Tissue (200 mg) was homogenized with 25 strokes of a Dounce homogenizer (Fisher, Ottawa, Canada) in 5 volumes of 0.25 M sucrose buffer (5 mM, EGTA), 10 mg/ml leupeptin, 1 mg/ml pepstatin, and 1 mM Pefabloc. Homogenates were then centrifuged at 176,267 g for 30 min at 4 °C. The TBS insoluble pellet was resuspended in TBS containing 1% Triton X-100 (TBS-TX) plus protease inhibitors, and then homogenized and centrifuged as before. The TBS-TX supernatant was removed, aliquoted, and stored at −80 °C. The TBS insoluble pellet was re-suspended in 88% FA (1.01 weight/volume), sonicated for 5 min, agitated overnight at 4 °C, and then stored at −80 °C.

Aβ detection by immunoprecipitation/western blotting

TBS and TBS-TX extracts (500 µl) were diluted 1:1 in TBS to a final volume of 1 ml for immunoprecipitation. Immunoprecipitation samples (TBS and TBS-TX) were pre-cleared with 25 µl of protein A beads sepharose (Sigma) for 1 h at 4°C. Homogenates were then spun at 825 g for 10 min. Supernatant was collected and incubated overnight at 4 °C on a nutor with the polyclonal antibody AW8 at a dilution 1:40 [38], plus 25 µl of protein A sepharose beads. Antigen-antibody protein A complexes were collected by centrifugation and washed as described previously [31] and the Aβ-1-42 levels were measured using a kit according to the manufacturer’s recommendations (Randos Laboratories, Ireland).

For each cortical sample, 200 mg of tissue was homogenized in 1 ml of ice-cold lysis buffer (10 mM Tris HCl, containing 1% Triton X-100, 5 mM EDTA, 1 mM leupeptin, 1 mg/mg pepstatin, and 1 mM Pefabloc. Homogenates were then centrifuged at 176,267 g for 30 min in a TLA 100.4 rotor (Beckman Coulter, Fullerton, CA). The supernatant referred to as the TBS extract which contains soluble Aβ species was removed and stored at −80 °C. The TBS insoluble pellet was resuspended in TBS containing 1% Triton X-100 (TBS-TX) plus protease inhibitors, and then homogenized and centrifuged as before. The TBS-TX supernatant was removed, aliquoted, and stored at −80 °C. The Triton insoluble pellet was re-suspended in 88% FA (1.01 weight/volume), sonicated for 5 min, agitated overnight at 4 °C, and then stored at −80 °C.
5 mM EGTA, 1% SDS, 1% NP-40, 10 mM deoxycholate, 1 mM NaF, 1 mM phenylmethylsulfonyl fluoride (PMSF) and protease and phosphatase inhibitors from Sigma) as described above. Samples were then spun at 9167 g for 5 min at 4 °C. Supernatant was collected and the protein concentrations measured using a BCA protein assay (Thermo Scientific, Rockford, IL, USA). Samples (30 μg total proteins) were electrophoresed on 10–20% polyacrylamide tris-tricine gels (Invitrogen) and transferred onto 0.2 μm nitrocellulose membrane (as described above).

Membranes were washed in TBS-T and blocked with 5% BSA in TBS-T for 1 h at room temperature. Membranes were then incubated with either rabbit anti-phospho Ser473-Akt antibody (1:1,000, Cell Signaling, MA, USA), rabbit anti-phospho Ser9-GSK3β or rabbit anti-p-Tau (Ser400/Thr403/Ser404) (1:1,000, Cell Signaling). After three washes, membranes were incubated with a secondary anti-rabbit antibody conjugated with horseradish peroxydase (1:2,000 in 5% BSA-TBS-T). Membranes were washed thoroughly in TBS-T and bound antibody detected using ECL and film. To detect total Akt, GSK3, or tau, membranes were stripped blocked and incubated with the corresponding antibody of choice (rabbit anti-total Akt antibody, 1:2,000, or rabbit anti-total GSK3 antibody, 1:2,000 or mouse anti-Tau (Tau 46) mAb, Cell Signaling). Membranes were washed and incubated with an anti-rabbit or anti-mouse antibody conjugated with horseradish peroxidase (1:4,000) and bound antibody detected using ECL and film. To measure β tubulin level of tubulin (for GSK and AKT) or GAPDH (for tau), membranes were stripped a second time and probed with α-tubulin anti-mouse antibody (1:10,000, Cedar, USA) or anti-mouse GAPDH antibody (Cell Signaling). All films were scanned and analyzed using Image J.

Electrophysiology

Electrodes were pulled from borosilicate capillary glass (GC150 F-10, Harvard Apparatus), using a horizontal puller (DMZ universal puller, Germany). Electrodes (2-5MΩ) were filled with artificial cerebrospinal fluid (NaCl 119 mM; D-glucose 11 mM; NaHCO3 26 mM; KCl 2.5 mM; MgSO4 1 mM; CaCl2 2.5 mM; NaH2PO4 1 mM). The voltage signal was filtered at 5kHz and stored for off-line analysis using a personal computer interfaced with a CED/National Instruments A/D board and WinCP software (J. Dempster, Strathclyde University). The Shaffer-collateral pathway was stimulated using a monopolar electrode (FHC, Bowdoin, USA) at 0.033 Hz (duration: 100 μs), the return electrode was a silver/silver chloride wire placed in the recording bath. Extracellular field recordings were made from the stratum radiatum of the CA1 at 30°C. Signals were amplified by a HS2A headstage (Molecular Devices, USA) connected to an Axoclamp 2B system (Molecular Devices) and a Brownlee 410 Precision preamplifier. A Master 8 (AMP) timer was used to deliver and time the stimulus trigger. Stable field excitatory post-synaptic potentials (fEPSPs) were recorded for 20 min at 40–50% maximum response prior to the application of high frequency stimulation (HFS) to induce LTP. LTP was induced using two trains of stimuli at 100 Hz for 1 s, with an inter-train interval of 30 s. Following the application of HFS, the synaptic response was recorded for a further period of 60 min. Statistical analysis was performed using ANOVA. All results are presented as mean ± SEM.

RESULTS

LTP measurements in ApPpswe/PS1dE9 mice

The magnitude of LTP in the CA1 region measured 60 min following HFS was compared in slices prepared from 6, 8, and 18 month old ApPpswe/PS1dE9 mice and wild type age-matched littermates (controls). There was no significant difference in the magnitude of LTP recorded 55–60 min following HFS in slices taken from 6 month old ApPpswe/PS1dE9 mice (153.6 ± 13.6%, n = 9) and their age-matched controls (158.2 ± 13.6%, n = 9, p = 0.05) (Fig. 1A). The magnitude of LTP was significantly reduced in hippocampal slices from 8 month old ApPpswe/PS1dE9 mice (124.0 ± 7.7%, n = 6) compared to controls (182.7 ± 16.4%, n = 9, p = 0.05) (Fig. 1B). This was also significantly lower than LTP recorded at 6 months in ApPpswe/PS1dE9 slices (p = 0.05). LTP magnitude was also significantly reduced in hippocampal slices taken from 18 month old ApPpswe/PS1dE9 mice (113.6 ± 7.4%, n = 6) compared to age matched controls (176.4 ± 6.4%, n = 10, p < 0.001, Fig. 1C). There was no significant difference in the degree of attenuation of LTP recorded in hippocampal slices from 8 and 18 month old ApPpswe/PS1dE9 mice (see summary bar chart summarizing LTP recorded in wild type and ApPpswe/PS1dE9 mice at 6, 8, and 18 months. Fig. 1D).

Aβ levels at 6, 8, and 18 months in ApPp/PS1 mice

To determine if the deficits in LTP recorded at 8 and 18 months were related to an increase in the concentration of Aβ, we measured the levels of Aβ40 and Aβ42 in the brains of 6, 8, and 18 month old ApPpswe/PS1dE9 mice. The levels of Aβ40 and Aβ42 were measured by ELISA and found to be significantly higher in 18 month old ApPpswe/PS1dE9 mice compared to age matched controls (Fig. 2A and B). The increase in Aβ levels was not observed in 6 month old ApPpswe/PS1dE9 mice (Fig. 2A and B). These results indicate that the decrease in LTP recorded at 18 months in ApPpswe/PS1dE9 mice is due to an increase in the levels of Aβ.
Fig. 1. Age-dependent deficits in LTP in hippocampal slices from AβPPswe/PS1dE9 mice. LTP measurements were performed at 55–60 min post high frequency stimulation. Arrows represent HFS application. Example field excitatory postsynaptic potentials (fEPSPs) are shown above each graph, recorded prior to and following LTP induction at the times indicated on the graphs. A) LTP in slices from 6 month old AβPPswe/PS1dE9 (n = 9), was similar to age-matched wild type (Wt) littermates (n = 9). B) LTP was impaired in AβPPswe/PS1dE9 hippocampal slices at 8 months (n = 6) compared to age-matched Wt littermates (n = 9, p < 0.05). C) Slices from 18 month old AβPPswe/PS1dE9 (n = 6) had a deficit in LTP compared to Wt littermates (n = 10, p < 0.05).

Brain content of AβPPswe, we examined levels of water-soluble, membrane-bound, and FA-soluble Aβ species across the three age groups. A prominent Aβ monomer band migrating at ~4 kDa was detected in all samples from AβPPswe/PS1dE9, but not in those from wild type mice (Fig. 2A). An additional more intense band migrating ~12 kDa was detected in the TBS-TX extracts from transgenic brain, but was not present in TBS or FA extracts from those brains or in TBS-TX extract from wild type mice (Fig. 2A, D). Since the epitope of the western blotting antibody, 6E10, lies between residues 6 and 10 of Aβ, this ~12 kDa band likely represents C99. The concentration of Aβ detected in TBS brain extracts increased on average 8-fold between 6 and 8 months with values for 6 months old of 7.65 ± 1.22 (n = 6) and for 8 month old mice 56.51 ± 12.96 (n = 6, p < 0.05, Fig. 2B). The level of Aβ in 18 month old AβPPswe/PS1dE9 mice was also significantly higher than in 6 month old mice, but although not significantly different from that in 8 month old animals, it tended to be lower (41.09 ± 2.96, n = 6, p ≥ 0.05) (Aβ is expressed in ng/g of wet brain).

The levels of Aβ detected in the TBS-TX extract were comparable to those detected in the TBS extract and steadily increased with age, 6 months (14.09 ± 2.98, n = 6), 8 months (51.22 ± 2.98, n = 5), and 18 months (90.09 ± 6.9, n = 5) (Aβ is expressed in ng/g of wet brain, p ≤ 0.01 for 6 month versus 8 month and p ≤ 0.05 for 8 month versus 18 month, Fig. 2C). Western blot analysis of FA extracts from transgenic mice revealed a prominent ~4 kDa band and a light smear of immunoreactive material stretching from this band up to the top of the gel (Fig. 2D). Since the intensity of the smear always correlated with that of the ~4 kDa band and the latter was more intense than the smear, we based our quantification of Aβ solely on the intensity of the ~4 kDa band. The level of Aβ in FA extracts was an order of magnitude larger than those in either the TBS or TBS-TX extracts and steadily increased with age reaching a value of 815 ng of Aβ per gram of wet tissue weight; FA-soluble Aβ species increased significantly between 6 months (135.9 ± 21.4, n = 5) and 8 months (384.1 ± 78.8, n = 6) (Aβ is expressed in μg/g of wet brain, p ≤ 0.05) and between 8 and 18 months (815.3 ± 121.7, n = 6, p ≤ 0.05) (Fig. 2E). These results demonstrate that the vast majority of Aβ at the three time points studied is present in water- and detergent-insoluble deposits and that the levels of TBS-
Fig. 2. The concentration of Aβ levels in the water-soluble, detergent-soluble and FA-soluble fractions of AβPPswel/PS1dE9 brain increases with age. A) Example immunoprecipitation/western blot of TBS and TBS-TX fractions from 6 month old wild type (Wt) and AβPPswel/PS1dE9 (Tg) mice. B) Levels of soluble Aβ (TBS extract) increased significantly between 6 and 8 months (p < 0.001), but decreased at 18 months, however, this decrease was not significant. C) There was a significant age-dependent increase in the level of membrane bound Aβ in TBS-TX at 6, 8, and 18 months. D) Example western blot showing the age-dependent increase of Aβ in the FA fraction in 8 and 18 month old AβPPswel/PS1dE9 brains. E) The levels of FA-soluble Aβ increased in an aged-dependent manner between 6, 8, and 18 months. For each n, samples were analyzed in duplicate and the average was calculated. *p = 0.05, **p = 0.001, ***p = 0.0001. In the bar charts, results are presented as the mean ± SEM.

soluble Aβ reached a plateau while water-insoluble Aβ continued to accumulate.

Chronic administration of SV protects against the age-dependent impairment of LTP in AβPPswel/PS1dE9 mice

As we observed age-dependent deficits in LTP in hippocampal slices from AβPPswel/PS1dE9 mice between 6 and 8 months (Fig. 1), an interval when the levels of Aβ were drastically increased, we investigated the effects of treating mice with SV at this critical time. We examined LTP in slices from AβPPswel/PS1dE9 and wild type littermates (controls) that received a diet supplemented ± SV for one month (month 7) and compared the level of LTP to that recorded in slices from age-matched mice that had received the control diet. Chronic SV treatment had no significant effect on the magnitude of LTP recorded in slices taken from 8 month old control mice (199.4 ± 16.9%, n = 8), p > 0.05, compared to age-matched untreated controls (182.7 ± 16.4%, n = 9, p > 0.05) (Fig. 3A). However, when we examined slices from AβPPswel/PS1dE9 mice that had received the SV-supplemented diet there was a significant increase in the magnitude of LTP, which measured (191.5 ± 12.1%, n = 7) compared to AβPPswel/PS1dE9 mice that had received normal unsupplemented chow (124.0 ± 7.7%, n = 6, p ≤ 0.001) (Fig. 3B).

Effect of SV on Aβ levels

To determine if the increased levels of LTP recorded following SV treatment resulted due to alterations in Aβ, we quantified Aβ in three biochemically distinct fractions of mouse brain. We found that SV-treatment caused a near 30% decrease in the levels of TBS- and TBS-TX-soluble Aβ, but due to the inherent vari-
Fig. 3. Chronic SV treatment rescued LTP deficits in slices from 8 month old AβPPsw/PS1dE9 mice. A) Chronic SV had no significant effect on LTP recorded in slices from 8 month old wild type (Wt) mice (199.4 ± 16.9%, \(n = 8 \), \(p = 0.49 \)) compared to age matched non-treated wild types (182.7 ± 16.4%, \(n = 9 \)). B) LTP deficits observed in slices from 8 month AβPPsw/PS1dE9 mice were significantly reduced following one month SV treatment (191.5 ± 12.1%, \(n = 7 \)) compared to untreated AβPPsw/PS1dE9 (124.0 ± 7.7%, \(n = 6 \), \(p \leq 0.001 \)). The magnitude of LTP was similar to age matched control levels in the treated and non-treated conditions in both cases (\(p > 0.05 \)). The black arrow represents time of HFS. Above each set of graphs, representative fEPSPs are shown that were recorded at the times indicated by the numbers on each graph. All values are presented as the mean ± SEM of the fEPSP slope normalized from the baseline. Statistical analysis was performed using an unpaired Students t-test.

SV treatment did not significantly change the level of p-Akt in the wild type treated group (110.5 ± 7.8 %, \(n = 5 \)) compared to untreated controls (100.0 ± 3.5%, \(n = 6 \), \(p \geq 0.05 \)). Of interest however, we observed an increase in the level of p-Akt in the AβPPsw/PS1dE9 treated group (112.1 ± 4.0, \(n = 4 \)) compared to the untreated transgenic group (91.8 ± 5.9 %, \(n = 6 \), \(p \leq 0.05 \) (Fig. 5A). SV treatment did not alter the level of total Akt in wild type mice (94.18 ± 4.4%, \(n = 5 \)), which was similar to non-treated controls (100.0 ± 2.9% , \(n = 6 \), \(p \geq 0.05 \)). There was also no significant difference between the level of total Akt in SV-treated AβPPsw/PS1dE9 (97.2 ± 3.7, \(n = 4 \)) and non-treated mice (95.7 ± 2.4%, \(n = 6 \), \(p \geq 0.05 \) (Fig. 5B). The ratio of p-Ser473 Akt/total Akt in brain extracts from wild type mice (1.003 ± 0.043, \(n = 6 \)) was similar to SV-treated wild types (1.196 ± 0.132, \(n = 5 \), \(p \geq 0.05 \)) (Fig. 5C). SV treatment however significantly increased the p-ser473 Akt/total Akt ratio in AβPPsw/PS1dE9 mice (1.158 ± 0.057, \(n = 4 \)) compared to age-matched untreated AβPPsw/PS1dE9 mice (0.960 ± 0.057; \(n = 6 \), \(p \leq 0.05 \) (Fig. 5C).

SV treatment rescued the deficit in LTP recorded in slices obtained from AβPPsw/PS1dE9 mice at 8 months, yet had only a modest effect on Aβ levels, suggesting that the protective effect of SV may be modulated by a process independent of Aβ modulation. Since synapto-toxic forms of Aβ have been shown to reduce phosphorylation of GSK-3-serine 9 [32] we examined the levels GSK-3 and Akt, two key enzymes, involved in synaptic plasticity [33]. In addition, as GSK-3 is known to phosphorylate tau at multiple sites [42], we examined levels of phospho- and total murine tau.
Fig. 4. Chronic SV treatment did not significantly alter cerebral Aβ levels in 8 month old AβPP/PS1 mice. A) Example immunoprecipitation/western blot showing detection of Aβ in the TBS and TBS-TX fractions prepared from 8 month old murine brain (Wt, wild type; Tg AβPP/PS1dE9, and Tg SV, simvastatin treated AβPP/PS1dE9 mice). B) Treatment with SV did not significantly alter the levels of TBS-soluble Aβ (56.5 ± 13.0, n = 6, p > 0.05). The level of membrane-bound Aβ in the SV treated group (58.3 ± 10.6, n = 6, p > 0.05) was also not significantly lower than the untreated group (58.3 ± 10.6, n = 6, p > 0.05). Values are expressed in ng/g of wet weight brain. C) Example western blot showing detection of Aβ in the FA fraction from 8 month old SV-treated AβPP/PS1 mice. D) Aβ levels in the FA fraction were similar in SV-treated (384.1 ± 78.8, n = 6) and untreated groups (384.1 ± 78.8, n = 6). All values are represented as the mean ± SEM and expressed in ng/g of wet brain.

The level of p-GSK3 was significantly lower in AβPP/PS1dE9 mice (82.8 ± 2.2%, n = 6) compared to age-matched wild types (100.0 ± 6.7%, n = 6) (Fig. 6A), but this was overcome by SV treatment that caused a significant increase in the level of p-GSK3 in SV-treated AβPP/PS1dE9 mice (119.9 ± 11.7%, n = 4, p < 0.05). However, SV had no effect on p-GSK3 levels in wild type mice (104.1 ± 4.9%, n = 5, p > 0.05) (Fig. 6A). In contrast, the level of total GSK3 was similar in all four groups; wild type (100.0 ± 5.2%, n = 6; AβPP/PS1dE9 (92.58 ± 2.1%, n = 5, p > 0.05); AβPP/PS1dE9 mice (101.4 ± 6.5%, n = 4, p > 0.05) (Fig. 6B). The phospho-GSK3/total GSK3 ratio was increased significantly in SV-treated 8 month old wild type mice (1.166 ± 0.043, n = 5) compared to age-matched untreated wild types (0.997 ± 0.017, n = 6, p ≤ 0.01) (Fig. 6C). In addition, SV treatment increased significantly the phospho-GSK3/total GSK3 ratio from 0.897 ± 0.035 (n = 6) to 1.176 ± 0.059 (n = 4) (p < 0.01) in extracts from AβPP/PS1dE9 mice (Fig. 6C). The ratio of p-GSK3/total GSK3 was significantly lower in the non-treated AβPP/PS1dE9 group (0.897 ± 0.035, n = 6) compared to the non-treated wild type group (0.997 ± 0.016, n = 6, p ≤ 0.05). As tau is phosphorylated by GSK3, we examined the level of tau phosphorylation across our treatment groups. We found that although levels of p-tau/tau were not significantly different between any of our groups of animals (see Supplementary Fig. 2). The effects of SV on serum cholesterol measurements at 8 months

To verify that SV was biologically active, we assayed serum cholesterol levels in mice at the end of the one month treatment period. As expected, treatment with the SV significantly decreased the levels of serum cholesterol in wild type mice (2.02 ± 0.22 mM; n = 6) compared to the untreated control group (2.67 ± 0.15 mM; n = 5). Likewise, SV significantly reduced plasma cholesterol levels in 8 month old AβPP/PS1dE9 mice (2.04 ± 0.30 mM; n = 5).
Fig. 5. Chronic SV restores normal levels of activated Akt in brain extracts from AβPPsw/PS1dE9 mice. A) The level of p-Akt was similar in wild type (100.0 ± 3.5%, n = 6) and AβPPsw/PS1dE9 mice (91.8 ± 5.9%, n = 6). SV treatment had no significant effect on the p-Akt levels in wild-type compared to non-treated mice (110.5 ± 7.8%, n = 5, p = 0.22). p-Akt levels were increased significantly in SV-treated AβPPsw/PS1dE9 mice compared to the non-treated group (112.1 ± 4.0%, n = 4, p = 0.03). B) There was no change in the level of total Akt across the control, transgenic and SV-treated groups. C) The p-Akt/total Akt ratio in SV-treated wild type mice (1.196 ± 0.132, n = 5) was similar to non-treated mice (1.003 ± 0.043, n = 6, p = 0.17). SV-treated AβPPsw/PS1dE9 mice had a significantly higher p-Akt/total Akt ratio (1.158 ± 0.057, n = 4) compared to the non-treated transgenic group (1.080 ± 0.057, n = 6, p ≤ 0.05).

DISCUSSION

In this study we have investigated the correlation between altered synaptic plasticity and Aβ load in the AβPPsw/PS1dE9 mouse model of AD. In addition, we have investigated the possible beneficial effects of SV administration on Aβ content and synaptic plasticity at a critical time in AβPPsw/PS1dE9 mice. Due to the pathological features of AD, which include abnormal accumulation of neurotoxic Aβ plaques within the brain [43], models used to study AD have included acute application of Aβ peptide to the hippocampus in vivo [44] and in vitro [45]. Transgenic mouse models which slowly accumulate increasing concentrations of Aβ have become increasingly popular [46]. In this study, we used the AβPPsw/PS1dE9 mouse model which overexpresses both the Swedish mutation of AβPP and mutant PS1 deleted in Exon 9, both mutations are linked to familial inherited forms of AD [47]. These mice have now been studied by many groups and are known to develop Aβ plaques at 4 months accompanied by plaque-associated activated microglia and astrocytes. Spatial navigation and reference learning deficits have been reported using the radial arm water maze at 12 months [48]. These mice also have neuritic abnormalities at 7–8 months [49]. In addition, several groups have also studied hippocampal LTP in this mouse model [50, 51]. While one group reported a lack of LTP deficit [51], they also reported much lower levels of Aβ.

Cognitive decline and memory deficits associated with AD are linked to synaptic neuronal network dysfunction and ultimately neuronal degeneration. Aβ is known to cause a deterioration of the synaptic function linked to decreased synaptic plasticity, and recent evidence also demonstrates alterations of the intrinsic...
Uncorrected Author Proof

C. Métais et al. / Simvastatin Treatment Preserves Synaptic Plasticity in AβPPswe/PS1dE9 Mice

Fig. 6. SV treatment restores activation of GSK3 in AβPPswe/PS1dE9 mice. A) p-GSK3 levels were significantly lower in brain homogenates from 8 month old AβPPswe/PS1dE9 mice (82.8 ± 2.2%, n=6, p ≤ 0.05) compared to age matched wild types (100.0 ± 6.7%, n=6 , p ≥ 0.05). SV treatment had no significant effect on the p-GSK3 levels in wild type mice (104.1 ± 4.9%, n=5) compared to untreated wild type mice. The level of p-GSK3 in SV-treated AβPPswe/PS1dE9 mice was significantly increased (119.9 ± 11.7%, n=4 , p ≤ 0.005). B) Levels of total GSK3 were similar in all groups. C) The p-GSK3/total GSK3 ratio was significantly lower in AβPPswe/PS1dE9 mice (0.897 ± 0.035, n=6 , p ≤ 0.05) compared to age-matched wild types (0.997 ± 0.016, n=6 , p ≤ 0.05). The p-GSK3/total GSK3 ratio was significantly increased in SV-treated AβPPswe/PS1dE9 mice (1.176 ± 0.059, n=4 ; p ≤ 0.005) and SV treated wild types (1.166 ± 0.043, n=5 ; p ≤ 0.005) compared to untreated mice. The ratio of p-GSK3/total GSK3 was similar between SV-treated AβPPswe/PS1dE9 and SV-treated wild types.

excitability of neurons in AD mouse models [52, 53]. In our study, we focused on synaptic plasticity in the form of hippocampal LTP, a well-documented cellular model of learning [54]. In view of the amyloid cascade hypothesis [16, 17], we examined the levels of soluble, membrane bound, and FA soluble Aβ species, to determine if there was a correlation between any observed alterations in LTP and Aβ load. Having established the characteristics of our model, we tested the effects of chronic administration of SV, an agent which has been proposed to be protective against AD [7, 8, 12].

LTP and Aβ load

Our results show a clear age-dependent impairment of LTP in hippocampal slices from AβPPswe/PS1dE9 mice. We did not observe any impairment in LTP in slices from 6 month old mice, consistent with a previous report [51]. However, in slices from 8 month old AβPPswe/PS1dE9 mice, we observed a significant deficit in LTP which was sustained in slices from 18 month old animals. Increased levels of soluble Aβ have also been shown to be associated with deficits in spatial learning and memory at 12 months in AβPPswe/PS1dE9 mice [55]. Our observed attenuation in LTP supports the learning deficits previously reported in these mice between 8 and 18 months [48, 53, 55, 56]. Most ELISAs appear to preferentially detect Aβ monomer [57, 58]; the use of such assays would not detect Aβ oligomers. Therefore we employed an immunoprecipitation/western blot assay which can capture both oligomeric and monomeric Aβ [59]. Analysis of the AβPP/PS1 mouse brains used in this study indicates that the water-soluble phase (TBS extract) contained Aβ species which migrated on SDS-PAGE as a ~4 kDa monomer. The gels used are
highly denaturing, thus the ~4 kDa species detected
may not necessarily reflect native Aβ assembly size.
Because fibrils are removed by centrifugation, the
species detected on SDS-PAGE are unlikely to be
SDS-induced breakdown products of fibrils. Thus the
~4 kDa species detected on SDS-PAGE could be a true
monomer and/or monomer derived from pre-fibrillar
assemblies that are unstable when electrophoresed in
SDS.
In our study, we quantified Aβ levels in the soluble,
membrane associated, and FA fractions of 6, 8, and 18
month old AβPPsw/PS1ΔE9 mice. We also found a
direct association between the age-dependent deficit in
LTP and all forms of Aβ. The observed deficit in LTP
between 6 and 8 months was accompanied by a highly
significant increase in the level of Aβ in the TBS, TBS-
TX, and FA fractions. The level of Aβ detected in the
tBS and TBS-TX extracts from 6 month old mice is
at the limit of detection of the western blotting system
used and was below the level of the lowest standard
(Fig. 2A). Therefore the estimated Aβ concentration in
these extracts may not be highly accurate. However, the
level of Aβ detected in extracts from the 8 and 18 month
mice were always higher than the lowest standard and
therefore their values are reliable. Moreover, absolute
accuracy of the values for the 6 month old mice does
not detract from the observation that the levels of Aβ
increase dramatically in AβPP/PS1 mice between 8 and
8 months.

Variations in reported Aβ load in
AβPPsw/PS1ΔE9 mice

There are variations in the reported levels of Aβ in
this mouse model [51, 53, 56]. The levels of Aβ we
detected are similar to those reported previously [56],
demonstrating total Aβ levels at 7 months to be in the
region of 25 nM, approximately 100 ng/g. Increasing
to 220 nM at 19 months (~880 ng/g), similar to the
total levels we determined. In one study, which found
no age-dependent reduction in LTP [51], the levels of
cortical Aβ appeared to be substantially lower than
those reported in our study. This difference in Aβ con-
tent may explain why we observed an age-dependent
and Aβ-dependent attenuation of LTP.

Effects of chronic SV treatment

The dose of SV used in our study is high compared to
the maximum dose which is approved by the U.S. Food
and Drug Administration for human treatment; 40 mg
/day. The dose we have used is similar to that used in
other murine studies in which SV has been admin-
istered for periods of up to three months [4]. High
doses of SV have been associated with renal failure in
humans, however as reported [4], SV (60 mg/kg body
weight) did not alter levels of mouse plasma transam-
inase, which is a marker of hepatic toxicity. It should
be noted that in our study we have used high doses to
investigate the effect of SV on treatment at a crit-
ical time of amyloid production and deposition (7–8
months) in our mouse model.

Epidemiological studies suggest that SV reduces
the risk of developing dementia and AD [7, 8, 12,
60], however there is controversy which may relate to
blood-brain barrier permeability and the stage of
AD at which statin is administered [61]. Cholesterol
dysregulation is now associated with many forms of
neurodegeneration [62]. High cholesterol levels in
midlife are reported to be a risk factor for the devel-
opment of AD [63]. In vitro studies suggest that high
cholesterol levels support amyloidogenic processing of
AβPP [27, 64, 65]. Cholesterol depletion can also
reduce Aβ production in hippocampal neurons [21].
SV can also alter the association of the NMDAR1 sub-
unit with lipid rafts [66], thereby altering the potential
for calcium influx via activation of this receptor-
channel complex. This may reduce neurotoxicity in
the event of increased extracellular glutamate which
is a proposed mechanism for Aβ-mediated LTP [67].
Statin treatment has also been shown to reduce Aβ-
mediated production of pro-inflammatory cytokines,
e.g., IL-1β [68], and to increase the production of
anti-inflammatory cytokines, e.g., IL-4 [69].

The observed decrease in plasma cholesterol fol-
lowing SV treatment (see Supplementary Material)
verified that this statin had biological activity; plasma
cholesterol levels were consistent with those reported
previously [4]. The dose of SV used in our study
has previously been shown to enhance learning and
memory in behavioral tasks in both wild type and
dT2576 mice [4]. In another study, however, SV did
not alter cognition in adult or aged wild type mice
[41]. Following treatment for one month with SV, we
did not observe any change in LTP in wild type slices
(Fig. 3A). However, the LTP impairments observed in
slices at 8 months from AβPPsw/PS1ΔE9 mice were
reversed following SV treatment (Fig. 3B). This result
suggested that SV may have either reduced levels of
soluble Aβ and/or attenuated the cellular processes
whereby Aβ disrupts synaptic plasticity. Acute appli-
cation of SV has been shown to enhance LTP in vitro
[70], possibly via inhibition of farnesylation [71]. We
did not, however, observe any enhancement of LTP in
control mice following chronic SV treatment.

In our study, SV treatment caused a reduction in soluble TBS-Aβ and membrane bound, TBS-TX Aβ content at 8 months, however, the decrease was not statistically significant. This may have been in part due to the variability between mice for soluble and membrane associated Aβ. As we used the monoclonal antibody 6E10, which recognizes residues 1 to 16 within the Aβ sequence, we could not determine if there was a change in the ratio of Aβ40:42 [72]. Aβ1-42 is known to be more prone to aggregation and fibril formation [73] and is more toxic than Aβ1-40, with small changes in the Aβ42:40 ratio influencing neurotoxicity [74]. SV may have reduced the Aβ42:40 ratio and/or decreased the Aβ induced neurotoxicity. SV treatment also had no effect on levels of FA soluble Aβ. In agreement with our observations, a recent study using J20 mice reported that SV had no effect on brain amyloidosis [41].

Aβ signaling, Akt, and GSK3

Aβ behaves as an antagonist of the insulin receptor, preventing the activation of PI3 kinase, and subsequently phosphorylation of Akt [75]. Mechanistically, Akt (PKB) can inactivate GSK3 by phosphorylation at Ser21 in the case of GSK3β signaling, Akt, and GSK3

In our study, SV treatment caused a reduction in soluble TBS-Aβ and membrane bound, TBS-TX Aβ content at 8 months, however, the decrease was not statistically significant. This may have been in part due to the variability between mice for soluble and membrane associated Aβ. As we used the monoclonal antibody 6E10, which recognizes residues 1 to 16 within the Aβ sequence, we could not determine if there was a change in the ratio of Aβ40:42 [72]. Aβ1-42 is known to be more prone to aggregation and fibril formation [73] and is more toxic than Aβ1-40, with small changes in the Aβ42:40 ratio influencing neurotoxicity [74]. SV may have reduced the Aβ42:40 ratio and/or decreased the Aβ induced neurotoxicity. SV treatment also had no effect on levels of FA soluble Aβ. In agreement with our observations, a recent study using J20 mice reported that SV had no effect on brain amyloidosis [41].

Aβ signaling, Akt, and GSK3

Aβ behaves as an antagonist of the insulin receptor, preventing the activation of PI3 kinase, and subsequently phosphorylation of Akt [75]. Mechanistically, Akt (PKB) can inactivate GSK3 by phosphorylation at Ser21 in the case of GSK3β signaling, Akt, and GSK3

In our study, SV treatment caused a reduction in soluble TBS-Aβ and membrane bound, TBS-TX Aβ content at 8 months, however, the decrease was not statistically significant. This may have been in part due to the variability between mice for soluble and membrane associated Aβ. As we used the monoclonal antibody 6E10, which recognizes residues 1 to 16 within the Aβ sequence, we could not determine if there was a change in the ratio of Aβ40:42 [72]. Aβ1-42 is known to be more prone to aggregation and fibril formation [73] and is more toxic than Aβ1-40, with small changes in the Aβ42:40 ratio influencing neurotoxicity [74]. SV may have reduced the Aβ42:40 ratio and/or decreased the Aβ induced neurotoxicity. SV treatment also had no effect on levels of FA soluble Aβ. In agreement with our observations, a recent study using J20 mice reported that SV had no effect on brain amyloidosis [41].

Aβ signaling, Akt, and GSK3

Aβ behaves as an antagonist of the insulin receptor, preventing the activation of PI3 kinase, and subsequently phosphorylation of Akt [75]. Mechanistically, Akt (PKB) can inactivate GSK3 by phosphorylation at Ser21 in the case of GSK3β signaling, Akt, and GSK3

In our study, SV treatment caused a reduction in soluble TBS-Aβ and membrane bound, TBS-TX Aβ content at 8 months, however, the decrease was not statistically significant. This may have been in part due to the variability between mice for soluble and membrane associated Aβ. As we used the monoclonal antibody 6E10, which recognizes residues 1 to 16 within the Aβ sequence, we could not determine if there was a change in the ratio of Aβ40:42 [72]. Aβ1-42 is known to be more prone to aggregation and fibril formation [73] and is more toxic than Aβ1-40, with small changes in the Aβ42:40 ratio influencing neurotoxicity [74]. SV may have reduced the Aβ42:40 ratio and/or decreased the Aβ induced neurotoxicity. SV treatment also had no effect on levels of FA soluble Aβ. In agreement with our observations, a recent study using J20 mice reported that SV had no effect on brain amyloidosis [41].
the prodromal phase of this disease [72], SV therapy at a critical time could prove to be highly beneficial.

ACKNOWLEDGMENTS

This work was supported by a grant from the Irish Health Research Board.

SUPPLEMENTARY MATERIAL

Supplementary material is available in the electronic version of this article: http://dx.doi.org/10.3233/JAD-130257.

REFERENCES

component of human neuroblastoma cells. Biochemistry 37, 15247-15253.

