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Abstract In recent years a web phenomenon known as Volunteered Geographic
Information (VGI) has produced large crowdsourced geographic datasets. Open-
StreetMap (OSM), the leading VGI project, aims at building an open-content
world map through user contributions. OSM semantics consists of a set of proper-
ties (called ‘tags’) describing geographic classes, whose usage is defined by project
contributors on a dedicated Wiki website. Because of its simple and open se-
mantic structure, the OSM approach often results in noisy and ambiguous data,
limiting its usability for analysis in information retrieval, recommender systems,
and data mining. Devising a mechanism for computing the semantic similarity of
the OSM geographic classes can help alleviate this semantic gap. The contribution
of this paper is twofold. It consists of (i) the development of the OSM Semantic
Network by means of a web crawler tailored to the OSM Wiki website; this se-
mantic network can be used to compute semantic similarity through co-citation
measures, providing a novel semantic tool for OSM and GIS communities; (ii) a
study of the cognitive plausibility (i.e. the ability to replicate human judgement)
of co-citation algorithms when applied to the computation of semantic similarity
of geographic concepts. Empirical evidence supports the usage of co-citation algo-
rithms – SimRank showing the highest plausibility – to compute concept similarity
in a crowdsourced semantic network.
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1 Introduction

For almost a decade, digital geographic information has experienced enormous
expansion reaching millions of Internet users, well beyond the limited circles of
geographers, cartographers, and urban planners, who have traditionally been the
gatekeepers. This rapid growth of broader interest and engagement in geographic
information has been studied from several viewpoints: crowdsourced data collec-
tion or Volunteered Geographic Information (VGI), ubiquitous cartography, web
mapping, and wikification are all facets of this complex phenomenon that Turner
has named neogeography [59].

In the mutable constellation of neogeography, OpenStreetMap (OSM) has
emerged as the most ambitious, and, in some respects, the most successful col-
laborative online project [20]. Through a Wiki model adapted for spatial data, its
numerous users create, edit, and utilise a vector map covering the entire planet.
Although the project name suggests an emphasis on routing, the map includes
natural entities and man-made features, from the borders of nations to the post
boxes in rural towns.

Given this extremely wide scope, it is clear that one of the critical aspects
for the coherence and quality of the OSM vector data lies in its associated se-
mantic structure. In the OSM vector dataset, map objects are associated with
properties that encode their semantic content, structured in key/value pairs (e.g.
amenity=university, name=‘University College Dublin’). In OSM, the properties of
an object are called ‘tags’.1 The meaning and usage of these tags are negotiated
within the contributors’ community on the OSM Wiki website.2 The meaning of
the tags can change over time, in a process of emergent semantics, where concepts
emerge, shift, and disappear in a complex evolutionary negotiation [38].

With the emergence of the Semantic Geospatial Web, the computation of se-
mantic similarity has gained prominence in the Geographical Information Science
(GIScience) community [12]. Semantic similarity has attracted remarkable interest
within several academic disciplines, originally in psychology, and subsequently in
linguistics, cognitive science, and knowledge engineering [27, 28]. Several measures
tailored to geographic concepts have been proposed and evaluated [52, 15, 50].

An effective measure of semantic similarity between OSM geo-concepts can
facilitate the usage of OSM data in numerous applications, such as geographic
information retrieval, spatial recommender systems, data mining, location-based
services, and geo-information integration. For example, given three classes of enti-
ties that can commonly be found in maps, fountain, school, and bookshop, a semantic
similarity measure is expected to find a stronger association between school and
bookshop than between these two concepts and fountain. However, only considering
the current OSM tag structure, this distinction cannot be captured because all of
these three concepts are siblings under the same parent concept (amenity).

Some projects address the need for semantic support in OSM. LinkedGeoData
has republished the OSM map as a Semantic Web dataset, structured on a shallow
tree representing the tags [5], while OSMonto3 consists of a formal description of

1 This usage of the term ‘tag’ is highly unusual: in the Web 2.0, tags are generally unstruc-
tured text labels used as meta-data [22]. However, to be consistent with the OSM terminology,
we will refer to the OSM properties as ‘tags’ in the rest of this paper.

2 http://wiki.openstreetmap.org (acc. August 10, 2012)
3 http://wiki.openstreetmap.org/wiki/OSMonto (acc. August 10, 2012)
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a subset of OSM tags. None of these projects exploits the OSM Wiki website as a
source of semantic knowledge.

Indeed, the OSM Wiki website contains a densely connected graph of pages
describing geographic concepts. While semantic information is implicitly present
in the Wiki link structure, it has to be made explicit in order to exploit it and
to refine the computation of semantic similarity. In this framework, co-citation
algorithms [54, 29] seem promising to compute semantic similarity in a semantic
network, but have been neglected in favour of other measures, particularly in the
geospatial field [52]. To the best of our knowledge, no in-depth study on their
cognitive plausibility has been published. In order to address these points, our
contribution to the area of VGI semantics and semantic similarity consists of two
parts:

(i) The development of the OSM Semantic Network,4 by means of a dedicated,
open source web crawler. This network captures semantic relationships be-
tween geographic concepts, which are implicit in the OSM Wiki website.
Among other applications, it allows the measurement of the semantic sim-
ilarity between concepts.5 It therefore represents a useful support tool for
geographic information retrieval, recommender systems, and data mining.

(ii) A study on cognitive plausibility (i.e. the ability to mimic human behaviour)
of co-citation algorithms to compute semantic similarity of geospatial classes.
While this approach can be in principle applied to any network, our experi-
ments have been conducted on the OSM Semantic Network.

The remainder of this article is organised as follows: Section 2 reviews related
work in the areas of VGI, OSM, and semantic similarity measures. Section 3 dis-
cusses OSM semantics, while Section 4 presents the OSM Semantic Network. Sec-
tion 5 frames the idea of co-citation in the context of OSM, and Section 6 presents
the study of cognitive plausibility of co-citation algorithms. Finally, Section 7
draws conclusions from this work, and suggests directions for future research.

2 Related work

Our research is positioned at the intersection between VGI, OSM, and the existing
approaches to semantic similarity, particularly within the area of GIScience. This
section provides an overview of these areas, highlighting related work.

Volunteered Geographic Information (VGI). During the past decade, the
rapid expansion of Web 2.0 has resulted in several crowdsourcing phenomena,
such as folksonomies, wiki models, social tagging, social bookmarking, and collab-
orative classification [22, 49]. Digital geographic information has also experienced
unprecedented growth, both in quantitative and qualitative terms. Goodchild [18]
termed the crowdsourcing of geographic information as Volunteered Geographic
Information, specifically referring to geographic information produced and released
by non-expert users through voluntary actions.

4 http://wiki.openstreetmap.org/wiki/OSMSemanticNetwork (acc. August 10, 2012)
5 Pre-computed similarity scores for the entire OSM Semantic Network are available at

http://spatial.ucd.ie/osn/similarities (acc. August 10, 2012)
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VGI is having a visible impact on the production and consumption of geo-
graphic information, adding a collaborative dimension to the traditionally hierar-
chical, centralised model of production [21]. In parallel, the expansion of mapping
to increasingly powerful mobile computing devices has led to the so-called ubiqui-

tous cartography [16].

Discussing these trends, Sui [57] suggests the term wikification to capture the
attempt to crowdsource non-textual data, emulating Wikipedia within the spatial
domain. Priedhorsky and Terveen proposed an adaptation of the wiki model for
spatial data [47]. The growth of available online geographic information raises the
issue of semantics: data is useless unless its meaning is intelligible. The threat of
a deluge of semantically poor geo-data prompted Egenhofer [12] to envisage the
emergence of the Semantic Geospatial Web, a spatial extension of the Semantic
Web initiative that will enable advanced information retrieval. Neogeography is the
umbrella term that Turner [59] coined in order to discuss this nexus of phenomena.

Overall, neogeography can be defined as crowdsourced, wikified, interactive,
web-based, volunteered, and ubiquitous. Several neogeographic online projects
gathered wide communities of users and contributors. These projects range from
the very specific – Cyclopath collects cycling-related geographic knowledge – to
the very generic – Wikimapia is a commercial effort to build an online editable
map where the user ‘can describe any place on Earth’.6 Among these initiatives,
we focus on OpenStreetMap, the only large-scale attempt at creating a fully open
content vector world map.

OpenStreetMap (OSM). Arguably the leading VGI initiative, OpenStreetMap
aims at creating an open vector map of the world [20]. Unlike other VGI projects,
OSM revolves around the construction of a vector dataset representing the entire
planet, not just annotations on an existing map, and emphasises the openness of
its datasets.7

Since its inception in 2004, OSM has been growing at a considerable rate, at-
tracting attention both in academia and industry [46]. Given the project’s reliance
on the Wiki model, one of the most significant issues is data quality, which for the
moment remains an open problem [19, 43]. While the geometric quality of OSM
data is debated, little work has been done on the semantic quality of the classes un-
der which the geometries are classified. The OSM geometries are described through
tags, which indicate their meaning and functional role in the dataset. For exam-
ple, a university campus consists of a polygon delimiting its boundaries, associated
with the tag amenity=university (see Section 3).

A set of similar and sometimes competing projects has emerged to enhance
OSM semantics. LinkedGeoData (LGD) has taken the entire OSM dataset and
republished it in a Semantic Web-friendly format, linking it to a formal ontology.8

Despite the advantages of the new format, the LGD ontology is a simple, shallow
tree structure, representing keys and values. Its semantic content is limited to
is a relationships between tags and respective values. OSMonto9 offers another
ontology based on OSM tags. Its main dataset consists of an incomplete formal
description of a subset of OSM tags.

6 http://cyclopath.org, http://wikimapia.org (acc. August 10, 2012)
7 http://wiki.openstreetmap.org/wiki/OpenStreetMap_License (acc. August 10, 2012)
8 http://linkedgeodata.org/ontology (acc. August 10, 2012)
9 http://wiki.openstreetmap.org/wiki/OSMonto (acc. August 10, 2012)
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To date, none of these projects has been officially integrated into the OSM
infrastructure, and OSM semantics has been largely left unexplored. Furthermore,
to the best of our knowledge, none of the aforementioned projects provides a
semantic similarity measure for OSM geographic concepts.

Similarity measures. Similarity is a ubiquitous concept in computing. Cluster-
ing, information retrieval, pattern recognition, data mining, image analysis, and
recommender systems rely heavily on some measure of similarity between text
documents, images, vectors, concepts, and other digital objects [53, 60, 30, 36].
Wittgenstein remarked that the meaning of words flows through “a complicated
network of similarities overlapping and criss-crossing”, rejecting the idea that con-
cepts can be given clear and definitive boundaries [61, par. 66]. Today, it is quite
uncontroversial that such a ‘complicated network of similarities’ occupies a central
position in human cognition and thinking [52].

In the field of GIScience, semantic similarity measures enable data integration
from different sources, ontology alignment, data mining, and semantic information
retrieval, i.e. dealing with ambiguous and fuzzy queries [11, 27, 15]. Schwering [52]
has proposed a classification of semantic similarity approaches. In her view, feature

models interpret objects as unstructured sets of features, and compute their similar-
ity on set-theoretic measures. The Matching-Distance Similarity Model (MDSM)
extends the ratio model developed by Tversky taking into account different fea-
tures of a geographic concept (parts, functions and attributes) [50]. Moreover,
Janowicz et al. [25] have developed SIM-DL, a feature model based on description
logics.

While approaches such as MDSM and SIM-DL measure similarity on the on-
tological description of geographic classes, semantic similarity cannot be assessed
at the instance level. Mülligann et al. [44] extract a similarity measure directly
from the OSM vector dataset, looking at the spatial co-occurrence of features.
However, the scope of their study is restricted to points of interest, and there is
no evaluation on how this measure correlates with human judgement.

Network models are used to measure similarity in semantic networks. Semantic
networks encode knowledge and meaning in the form of graphs, whose vertices
represent concepts [55]. Such models have been widely used in psychology and
cognitive science, for example to study the workings of human semantic memory
[9]. These approaches to similarity are based on some form of structural distance
between nodes (e.g. edge counting), sometimes adding additional parameters to
weight the paths [48], or on the topological comparison of subgraphs [35].

Such network-based techniques generally rely on well-defined, expert-generated
semantic networks such as WordNet [39]. However, many real-world datasets on
the Internet do not present such a structure, but encode valuable information in
the form of graphs of inter-linked objects, sometimes referred to as information net-

works. Given the spread of such networks in many fields, algorithms have emerged
to identify similar objects exclusively on their link patterns in a network that does
not explicitly encode attributes, parts, and other details of concepts.

Co-citation algorithms. In 1973, Small published the co-citation algorithm
[54]. Given a directed graph representing scientific papers and their mutual ci-
tations, co-citation measures the similarity between two given papers by the fre-
quency in which they are cited together. Extending co-citation to an iterative form,
Jeh and Widom [29] in 2002 created SimRank, a structural approach to calculate
vertex similarity in directed graphs. The underlying recursive assumption is that
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“two objects are similar if they are referenced by similar objects” [29, p. 541].
Given its generality and effectiveness, SimRank has attracted notable research
interest [37, 33].

The P-Rank algorithm (Penetrating Rank) generalises SimRank, taking into
account outgoing links, stating that “two entities are similar if (1) they are ref-
erenced by similar entities; and (2) they reference similar entities” [62, p. 553].
Classic algorithms such as the original Co-citation [54], Coupling [31], and Amsler
[4] are specific cases of P-Rank. As recent surveys within GIScience do not address
these approaches, the community does not seem to have explored their potential to
assess semantic similarity within the geographic domain, favouring other models
[52, 28].

When computing the semantic similarity, it is essential to assess how a compu-
tational measure correlates with human thinking (i.e. cognitive plausibility). The
cognitive plausibility of semantic similarity measures for geo-concepts has been
studied for MDSM [50] and SIM-DL [26]. To the best of our knowledge, the cog-
nitive plausibility of co-citation algorithms applied to semantic networks have not
been investigated.

3 OSM Semantic Network extraction

This section describes the development of a new semantic network by means of a
dedicated web crawler, tailored to the OSM Wiki website. In the OpenStreetMap
vector dataset, map objects are encoded as nodes (points of interest or centroids),
ways (lines and polygons), and relations (groups of objects). The world dataset
currently contains 1.2 billion nodes, 106 million ways, and 1 million relations.10

Every map object is described through properties called ‘tags’, defining the se-
mantic content of the object (e.g. amenity=university).

The OSM tags are proposed, defined, discussed, and sometimes discarded on
the OSM Wiki website, which hosts detailed definitions and usage guidelines.11

This website is used as a reference to document and facilitate the mapping process,
which is conducted through separate, dedicated web services and tools, which are
outside the scope of this paper. According to the OSM Wiki website, tagging
should deliberately be informal, loose, and open. Mappers are encouraged to use
well-known tags, but they are not discouraged from creating new tags when it is
deemed useful. This is a more radical policy than that of comparable projects,
such as Wikimapia (see Section 2).

The OSM keys can represent groups of geographic entities (e.g. waterway, lan-

duse, natural), or encode properties with unrestricted values (e.g. name, addr:street).
While some keys have a small set of well defined values (e.g. junction), other keys
have become very large, overstretching their semantic boundaries. The key amenity,
for example, is associated with more than 150 values, ranging from fast food restau-
rants to hospitals and cinemas. Moreover, similar tags can be defined with differ-
ent keys, resulting in semantic difficulties for the users (e.g. landuse=garages versus
amenity=parking). This semantic gap, occasionally, can cause disagreements among
users, resulting in ‘tag wars’ [42].

10 http://wiki.openstreetmap.org/wiki/Statistics (acc. August 10, 2012)
11 http://wiki.openstreetmap.org/wiki/Map_Features (acc. August 10, 2012)
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To date, the OSM community has about 453,000 contributors. Through the
OSM Wiki website, this large group negotiates what Kuhn [32] calls the ‘social
agreements’ needed to define common semantic symbols that can be understood by
most users. The fluid openness of OSM semantics is both a strength and a weakness
of the project. While contributors are attracted to the lack of formal validation
procedures to make changes to the map, this degree of freedom generates noise in
the form of semantic ambiguity and redundancy. For this reason, several efforts
have been undertaken to monitor the tag usage in the vector dataset, such as the
web services TagInfo and TagWatch.12

The OSM Wiki website encodes semantic content as a collection of inter-linked
pages, discussing aspects of the OSM vector dataset. Textual descriptions, images,
and links to Wikipedia are used by contributors to clarify the meaning and usage
of OSM tags. In this sense, the OSM Wiki can be seen as a semantic network, in
which the pages are concepts and the links represent relationships [55]. In such
a network, concepts have connections with other concepts. As pages are modified
and reconnected to other pages, the network topology changes accordingly. In the
development of this semantic network, we focused on key and tag pages in English.
The OSM Wiki pages can be categorised as follows:13

(i) Key page. Describes the meaning and usage of an OSM key, grouping sev-
eral tags with the same key. For example the page osmwiki:Key:amenity sum-
marises the key amenity and its recommended values (e.g. university, pub).

(ii) Tag page. Describes a specific key/value pair, representing a concept in the
semantic network. For example, osmwiki:Tag:amenity=library defines the
tag amenity=library.

(iii) Proposed tag page. Some tags have been proposed by contributors and are
undergoing review. For instance, the tag historic=aqueduct has been proposed
in osmwiki:Proposed features/aqueduct and is currently marked as a draft.

(iv) Cluster pages. Pages that group related links to tag pages, while not rep-
resenting directly a tag (e.g. osmwiki:Building attributes).

(v) Other pages. All the pages that do not fall in the previous categories, includ-
ing contributor profiles, technical pages unrelated to tags, and administrative
pages (e.g. osmwiki:Linear maps).

More formally, the OSM Wiki can be conceptualised as a directed graph G =
(V,E), where vertices V are the web pages, and edges E are their hyperlinks.
In order to extract the directed graph G from the OSM Wiki, we implemented
the OSM Wiki Crawler, an open source tool tailored to the OSM Wiki content
structure.14

The OSM Wiki crawler. The purpose of this semantic crawler is the extrac-
tion of a semantic network from a dynamic and complex wiki website, encoding
geographic knowledge that can be utilised for various tasks – in this paper we
focus on the computation of semantic similarity. Although the crawler focuses on
the OSM Wiki website, its general approach can be adopted to extract a semantic
network from any wiki, open content websites.

12 http://taginfo.openstreetmap.org, http://wiki.openstreetmap.org/wiki/Tagwatch
(acc. August 10, 2012)
13 ‘osmwiki:’ stands for the namespace http://wiki.openstreetmap.org/wiki/
14 http://github.com/ucd-spatial/OsmWikiCrawler (acc. August 10, 2012)
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URI Description Instances
Vertices
osmwiki:Key:〈key〉 OSM Key. 1,503
osmwiki:Tag:〈key = value〉 OSM Tag. 2,047
osmwiki:Proposed features/〈tag〉 OSM Proposed Tag. 784
osmwiki:〈page〉 OSM Cluster page. 22
others LGD and Wikipedia nodes.* 2,111
Edges
osmwiki:link Internal hyperlink within OSM Wiki. 12,974
osmwiki:key Link to OSM key page. 5,408
rdf:rdf-schema#comment OSM Tag description. 2,889
osmwiki:combinedWith Tag is combined with target tag. 2,054
osmwiki:wikipediaLink A link to a Wikipedia page. 1,604
owl:owl#equivalentClass Equivalent class in other ontology. 652
osmwiki:implies Tag implies target tag. 226

Table 1 OSM Semantic Network vertices (total: 6,467) and edges, sorted by number of in-
stances (total: 28,807). Vertices marked with ∗ are leaf vertices, i.e. have only incoming edges.
Graph extracted on February 1, 2012.

The extracted network is stored in the Resource Description Framework (RDF),
containing a set of statements of the format 〈subject, predicate, object〉, logically
equivalent to a labelled, directed graph.15 The crawler downloads and analyses
the XML dump provided by OSM, which contains the complete content of the
website.16 To date, the OSM Wiki website is made of about 30,000 pages, 5,500 of
which describe key and tags used in the vector map. The crawler extracts from each
page the following information, if available: OSM keys and tags, lexical descrip-
tions, relationships between tags, general internal links, and links to Wikipedia
pages.

A heuristic function assigns OSM tags to the equivalent terms in the Linked-
GeoData light-weight ontology [5]. The heuristic is based on lexical matching be-
tween the OSM tag and the LinkedGeoData term. For example, the OSM tag
amenity=fountain, is matched against lgdo:AmenityFountain.17 If the key=value

pair is not defined, only the value is considered (e.g. lgdo:Fountain). We have
validated this approach by observing that, in a random sample of size 30, all the
mappings to LinkedGeoData were correct.18

4 OSM Semantic Network

The open source tool that we have developed, the OSM Wiki Crawler, extracts
a semantic network from the OSM Wiki website, in the form of an RDF graph.
The graph vertices represent OSM keys, tags, and clusters. The edge labels spec-
ify a number of different relationships between vertices, ranging from links to a
tag key (osmwiki:key) to a logical implication (osmwiki:implies). Generic internal
hyperlinks (osmwiki:link) are particularly important, as they capture general re-
latedness between the source and the target pages, useful to compute a cognitively

15 http://www.w3.org/RDF (acc. August 10, 2012)
16 http://dump.wiki.openstreetmap.org (acc. August 10, 2012)
17 ‘lgdo:’ stands for the namespace http://linkedgeodata.org/ontology/
18 The full algorithm of the crawler is available in the source code documentation.
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Fig. 1 Distribution of vertex degree in the OSM Semantic Network considering (a) incoming
edges, and (b) outgoing edges. As shown graphically, these distributions can be approximated
by a power law p(x) = bx−α. Graph extracted on February 1, 2012.

plausible semantic similarity. For example, amenity=library contains generic links
to tourism=museum and shop=books.

Cluster pages do not represent tags directly, but contribute to the computation
of the semantic similarity between tags. For instance, the cluster page on building
attributes19 strengthens the connectivity between several tags related to buildings.
To promote semantic interoperability, the OSM Semantic Network is designed as
Linked Data.20 OSM terms are linked to Wikipedia pages and LinkedGeoData
terms to which they are semantically equivalent (e.g. osmwiki:Tag:amenity=embassy
is linked to http://en.wikipedia.org/wiki/Embassy and to lgdo:Embassy). The de-
tailed content of the RDF graph is presented in Table 1. Pre-extracted networks
are available online.21

In order to extract information from the semantic network, it is useful to look at
its statistical properties. Defining the degree of a vertex as the number of incident
edges (formally dG(v)), the mean degree in G is 9.66, which indicates that OSM
tags are strongly interconnected. Furthermore, the indegree and outdegree of a
vertex can be defined as the number of its ingoing and outgoing edges. In the
OSM Semantic Network, the mean indegree is 3.6, while the mean outdegree is
6.06. Figure 1 shows the degree distribution in the OSM Semantic Network, divided
into (a) indegree, and (b) outdegree. The figure shows that both quantities roughly
follow a power law distribution.

This is consistent with the results reported by Broder et al. [8] in 2000: rep-
resenting the entire World Wide Web as a directed graph, the degree distribution
follows a power law, i.e. most pages have low connectivity, while few pages have
high connectivity. Interestingly, the OSM Wiki also shares this characteristic with
Wikipedia, whose degree distribution also follows a power law, in particular the
Zipf distribution [45]. By treating Wikipedia as a semantic network, it is possible

19 osmwiki:Proposed_features/Building_attributes (acc. August 10, 2012)
20 http://linkeddata.org (acc. August 10, 2012)
21 http://wiki.openstreetmap.org/wiki/OSMSemanticNetwork (acc. August 10, 2012)
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to measure relatedness between pages [45], or to find missing links [1]. Turdakov
and Velikhov [58] use the Dice measure on Wikipedia hyperlinks to retrieve se-
mantically related articles, and also to perform word sense disambiguation. It is
therefore not unreasonable to expect that such a dense link structure in the OSM
Semantic Network contains information about the semantic similarity between
OSM tags.

5 Co-citation for OSM Tag Similarity

The OSM Semantic Network represents tags and their mutual connections. To
exploit the semantic content of the network, we explore its potential to compute
the semantic similarity of OSM tags. We define a similarity measure between the
tags a and b as s(a, b) ∈ [0, 1], where 0 means no similarity, and 1 means maximum
similarity being a and b vertices in the OSM Semantic Network. In this article
we focus on a tag-to-tag similarity measure, leaving the object-to-object case for
future work.

Network-based similarity techniques assume that the relationships between
concepts must be sufficiently rich and representative [52]. To assess whether its
dense link structure contains valid knowledge about the OSM tags, we compute
a similarity score purely based on the network topology, ignoring the lexical de-
scriptions of tags. Approaches such as MDSM and SIM-DL (see Section 2) have
been devised specifically for geographic concepts. Because such measures require
a detailed description of attributes, parts, and roles not present in OSM, they
cannot be used in this context.

Because of the shallow semantic structure of OSM, visible both in LinkedGeo-
Data and OSMonto, the paths between OSM tags are very short: the majority of
concepts are connected through 2 edges, even when semantically very dissimilar
(e.g. sauna is linked to amenity, which links back to 150 values, including bench).
Shortest-path based techniques need paths of variable lengths to be effective, and
are therefore doomed to fail in this case. To compute the semantic similarity of
OSM tags it is necessary to identify alternative measures. Co-citation based algo-
rithms seem promising.

Co-citation in a semantic network. As shown in Section 2, co-citation algo-
rithms aim at finding similarity in a graph of inter-linked objects, based on the
intuition that similar objects are referenced together. Although it is possible to
compute co-citation measures on the LinkedGeoData and OSMonto ontologies,
this would result in a binary classification between tags that are in the same
subtree (e.g. amenity=school, amenity=fountain) or not (e.g. amenity=school, lan-

duse=forest). This approach is unable to account for semantic similarity within
the same key, e.g. amenity=school and amenity=university are expected to be more
similar than amenity=school and amenity=fountain. On the other hand, our OSM
Semantic Network allows for a finer computation of similarity by including general
hyperlinks between pages, and can distinguish between these cases.

Co-citation algorithms have not been utilised to compute semantic similarity
of geographic classes. To fill this knowledge gap, we consider P-Rank, a generic
co-citation algorithm [62]. By setting different values to its parameters, P-Rank
is equivalent to earlier algorithms, including Co-citation [54], Coupling [31], and
Amsler [4], SimRank [29], and rvs-SimRank [62]. For this reason, it is possible to
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Symbol Description
G = (V,E) the directed graph in which each vertex a ∈ V represents a OSM tag

and 〈a, b〉 ∈ E is a hyperlink from tag a to b.
s(a, b) similarity score between tags a and b ∈ V . s(a, b) ∈ [0, 1], s(a, b) =

s(b, a). When a = b, s(a, b) = 1.
I(a) set of incoming links to tag a ∈ V . |I(a)| is the indegree of a.
O(a) set of outgoing links to tag a ∈ V . |O(a)| is the outdegree of a.
C P-Rank decay factor. C ∈ (0, 1). If C = 1, P-Rank does not converge.
λ P-Rank in-out balance constant. λ ∈ [0, 1]. λ = 1: incoming links;

λ = 0: outgoing links.
k P-Rank current iteration. k ∈ [0,K].
K P-Rank maximum iterations. K ∈ [1,∞).
Rk P-Rank score matrix at iteration k.
Ti transition matrix of G constructed on I(a).
To transition matrix of G constructed on O(a).
Θ diagonal matrix. ∀k, when a = b, Θ(a, b) + Rk(a, b) = 1.

Table 2 Notations

observe the performance of co-citation algorithms by exploring the result space
of P-Rank. In this context, we propose a linear algebra formulation of P-Rank,
discussing in detail the meaning and impact of its parameters (K, λ, and C),
largely left implicit in the literature [62, 29, 33].

P-Rank is a recursive measure of similarity, based on the combination of two
recursive assumptions: (1) two entities are similar if they are referenced by similar
entities; (2) two entities are similar if they reference similar entities. All of the
notations and symbols used in this paper are summarised in Table 2.

P-Rank is calculated iteratively, choosing a number of iterations K ∈ [1,∞).
The higher K, the better the approximation of the theoretical solution to P-Rank.
At the first iteration R0 (k = 0), the scores are initialised to 0, R0(a, b) = 0, apart
from the identities (if a = b, then R0(a, b) = 1). All P-Rank iterations with k > 0
can be expressed as a series of iterations converging to the theoretical similarity
score:

s(a, b) = lim
k→∞

Rk(a, b) (1)

Rk = C(λ ·TiRk−1T′i + (1− λ) ·ToRk−1T′o) + Θ

The similarity s(a, b) is a function f(C, λ). The constant C is the decay factor
applied to the recursive propagation of similarity across the edges. When C is
close to 0, almost no similarity flows from one pair to its neighbours, while with
C close to 1 the opposite situation arises. The constant λ, on the other hand, is
the in-outlinks balance. When λ = 1, only incoming links are considered, while,
λ = 0 indicates that the similarity is computed only on the outgoing links. The
number of iterations K determines the minimum precision of the algorithm, i.e.
the maximum gap between s(a, b) and Rk(a, b), which decreases as K grows [37].
K, while obviously influencing Rk(a, b), has no impact on s(a, b).

6 Cognitive plausibility of co-citation algorithms

In this section we describe an experimental study on the cognitive plausibility
of co-citation algorithms, in the case of the computation of semantic similarity of
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geographic classes. Following Janowicz et al. [26], we define a quantitative measure
of cognitive plausibility as the observable correlation between the machine-generated
rankings of concept pairs and human-generated rankings, ignoring the underlying
mental operations.

This approach to cognitive plausibility was originally developed in the area of
computational linguistics: several sets of word pairs ranked by humans have been
published as ‘gold standards’ against which the similarity measures can be tested.
Rubenstein and Goodenough [51] have collected a set of 65 word pairs ranked
by their synonymity; Miller and Charles [40] published a similar dataset with 30
word pairs. The WordSimilarity-353 dataset contains 353 word pairs, ranked by
similarity and relatedness [2]. However, none of these datasets fits our context, as
they contain few words related to geographic entities.

In GIScience, similarity datasets have been created assessing the similarity of
geographic concepts. In their evaluation of the SIM-DL algorithm, Janowicz et al.
[26] have collected human rankings for concepts related to bodies of water. This
dataset would not fit our evaluation because it is restricted to a specific geographic
semantic subdomain (bodies of water), and it was collected through a questionnaire
in German – in this paper we consider only OSM semantics in English.

MDSM evaluation dataset. This geographic similarity dataset, originally col-
lected by Rodŕıguez and Egenhofer, is suitable to study the cognitive plausibility
of co-citation measures. The dataset was utilised to evaluate MDSM, their seman-
tic similarity measure [50]. They collected similarity judgements for 33 geographic
concepts, including large natural entities (e.g. mountain and forest), and man-made
features (e.g. bridge and house). Because these concepts were defined in an abstract
way through a short lexical definition (without focusing on ontology-specific infor-
mation), they are suitable to study the cognitive plausibility of our approach.

Judgements were obtained from 72 students through two surveys (A and B),
each presenting five questions. Each question consists of a target concept (e.g.
stadium) and 10 or 11 base concepts to sort according to their similarity to the
target. The results indicate the ranking of the concept pairs, from the most to the
least similar (e.g. 〈athletic field, ball park〉 → . . . → 〈athletic field, library〉). In their
evaluation, Rodŕıguez and Egenhofer focused the impact of context on similarity
judgment. We excluded from the MDSM dataset four questions that specify a
particular context, which is beyond the scope of this paper.

The 33 concepts of the MDSM dataset were manually mapped onto the corre-
sponding tags in the OSM Semantic Network, based on their textual definitions.
For example, the concept tennis court was matched to osmwiki:Tag:sport=tennis.
While 29 concepts have a satisfactory equivalent in OSM, four concepts (terminal,
transportation, lagoon, and desert) were discarded because they did not have a pre-
cise matching concept in the OSM Semantic Network. As a result, we obtained
a modified MDSM dataset containing five questions on 29 geographic concepts.
The entire dataset is available online, including the complete manual mapping and
definitions.22

22 http://github.com/ucd-spatial/Datasets (acc. August 10, 2012)
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6.1 Experiment setup

To obtain semantic similarity scores for the OSM tags, we have run several co-
citation algorithms on the OSM Semantic Network described in Section 4. P-Rank
[62] is a generic algorithm that, with certain combinations of parameters C, K,
and λ, is equivalent to Co-citation [54], Coupling [31], Amsler [4], SimRank [29],
and rvs-SimRank [62]. Hence, in order to study the cognitive plausibility of these
algorithms, we have computed P-Rank for 550 unique combinations of K, C and
λ. The experimental setup is the following (see Table 2 for notations):

• λ: 11 discrete equidistant levels ∈ [0, 1].
• C: 5 discrete equidistant levels ∈ [.1, .9].
• K: 10 P-Rank iterations.

Following the approach adopted by Rodŕıguez and Egenhofer [50], the results
were computed on the rankings and not on the similarity scores, i.e. the order of
the pairs returned by the system against the order in the MDSM dataset, using
Spearman’s rank correlation coefficient [56]. Spearman’s ρ was computed on each
of the five questions, over the 550 combinations. To assess how the algorithms
performed overall, a meta-analysis of correlation coefficients had to be carried out
for each combination of parameters, across the five questions.

Among the existing meta-analytical methods for correlation coefficients, Field
[14] concludes that the Hunter-Schmidt method tends to provide the most accurate
estimates. This method was originally developed for Pearson’s product moment
correlation coefficient [24]. As Altman and Gardner [3] noted, both Pearson’s r and
Spearman’s ρ follow a similar statistical distribution, so that the Hunter-Schmidt
method can also be applied in our case.

The aggregated ρ̄ is computed through a weighted mean, where the weights are
the number of pairs in each question. ρ̄ expresses the overall correlation between
the rankings of P-Rank applied to the OSM Semantic Network, and the MDSM
human-generated dataset. To assess the statistical significance of these 550 tests,
we utilised the Hunter-Schmidt method, based on the standard deviation, the
standard error, and the Z score [24]. For all of 550 combinations, we obtained
p < .0001, indicating high statistical significance.

6.2 Discussion of results

The concept rankings for 550 statistically significant cases were generated on the
OSM Semantic Network, obtaining correlations with human ranked-pairs of the
MDSM dataset. Considering only incoming links (λ = 1), the mean correlation ρ̄

is plotted in Figure 2. A convergence with K > 7 can be observed. The similarity
scores fluctuate during the first iterations, and then plateau, remaining stable in
the following iterations. As is reasonable to expect, the convergence is more rapid
when C is close to 0. Figure 3 focuses instead on the parameter λ, showing its
impact on the correlation. As λ gets closer to 1, the correlation improves steadily,
suggesting that incoming links are more relevant to the computation of similarity
than outgoing ones.

The overall impact of the decay factor C is clear, as the best correlations are
consistently obtained when C = .9, and the worst when C = .1 (see Figure 2 and 3).
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while Spearman’s ρ̄ is a measure of correlation with human behaviour. p < .0001 for all ρ̄.
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Fig. 3 Experiment results grouped by C (fixed parameter:K = 10).K is the P-Rank iteration,
while Spearman’s ρ̄ is a measure of correlation with human behaviour. p < .0001 for all ρ̄.

Given that C ∈ (0, 1), it is important to look at its impact at the asymptotes. When
C → 0, the similarity function s(a, b) tends to R0. On the other hand, the similarity
function does not converge to a finite value when C → 1. These properties were
confirmed on an additional experiment run with C ∈ (.9, 1),K = 100, λ = 1. With
C >= .99, the similarity scores presents strong variations even when K > 50, not
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K λ C Algorithm Spearman ρ̄
1 0 − Coupling [31] .55 ±.09
1 .5 − Amsler [4] .67 ±.07
1 1 − Co-citation [54] .72 ±.08
10 0 .9 rvs-SimRank [62] .57 ±.12
10 0 .5 − .57 ±.1
10 0 .1 − .60 ±.07
10 .5 .9 P-Rank [62] .76 ±.08
10 .5 .5 − .73 ±.09
10 .5 .1 − .67 ±.07
10 1 .9 SimRank [29] .85 ±.07*
10 1 .5 − .78 ±.09
10 1 .1 − .75 ±.07

Table 3 Experimental results. K,λ and C are the P-Rank parameters. The Spearman rank
correlation is the average of the correlations for each of the five questions of the modified
MDSM dataset. ρ̄ is shown with the 95% confidence interval computed with the Hunter-
Schmidt method [10]. (*) Best performance.

showing any sign of convergence. According to Jeh and Widom [29], the choice of
the optimal value of C depends on the specific domain in which SimRank is being
applied. On experimental grounds, we can state that, in the context of the OSM
Semantic Network, optimal C ∈ [.9, .95], which suggests that, to match human
judgement, similarity has to flow across the graph edges with a slow decay.

The overall results of the experiment are reported in Table 3, which shows
the mean Spearman’s ρ with 95% confidence intervals, highlighting the overall
cognitive plausibility of the algorithms. Among the non-iterative algorithms (K =
1), Small’s co-citation performs better than its counterparts. It is possible to notice
that, among the iterative algorithms (K > 1), SimRank with a low decay (C = .9)
clearly outperforms the other approaches, reaching a ρ̄ = .85± .07. Stronger decay
factors make the algorithm lose valuable information. The worst results are instead
obtained by rvs-SimRank (ρ̄ = .57 ± .12), indicating that, in the OSM Semantic
Network, outgoing connections between concepts are not strongly correlated to
their semantic similarity. This suggests that, when describing concepts in the OSM
Wiki, contributors tend to mention similar concepts together.

On the other hand, citations of the same concept while defining similar classes
are statistically less common. For example, considering the links between three
OSM tags, waterway=riverbank references waterway=river and waterway=stream,
two highly similar concepts. The waterway=river tag back-links waterway=river-

bank, whilst waterway=stream does not. Hence in this case, incoming links from
waterway=riverbank strengthen similarity between waterway=river and waterway=-

stream, while outgoing links do not encode similarity.

The OSM Semantic Network contains several types of edges (see Section 4),
which are treated equally in this experiment. In order to assess the importance of
each edge type, we ran a series of additional experiments including only one type
of edge at a time. The co-citation algorithms are not computable when including
only sparse edge types such as osmwiki:key and osmwiki:implies. On the other
hand, when including only edges of type osmwiki:link, all the algorithms are
computable and the corresponding ρ̄ are slightly lower than those obtained in
the main experiment with all edge types (e.g. .84 ± .07 for SimRank, instead of
.85± .07). This indicates that the generic hyperlinks osmwiki:link convey the bulk
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Question Target concept SimRank ρ (dataset:
OSM Semantic Network)

MDSM ρ (dataset: Word-
Net/SDTS)

QA1 stadium .85 .96
QB1 athletic field .87 .92
QA4 travelway .95 .9
QB4 path .9 .88
QAB5 lake .7 .82*
- - ρ̄ = .85 ρ̄ = .89

Table 4 Detailed results for SimRank ( C = .9, ρ̄ = .85± .07 ). MDSM results published in
[50]. ρ̄ are the weighted means over the five questions. For all ρ, p < .05. (*) Mean of survey
A and B.

of the semantic similarity contained in the network, and the other edges give a
minor semantic contribution.

Overall, the results show a clear improvement as λ moves from 0 to 1, and
C from .1 to .9. The complete experimental results are available online.23 The
results outlined in this Section show that the SimRank algorithm applied to the
OSM Semantic Network closely matches the human judgement in the modified
MDSM similarity dataset, reaching the correlation ρ̄ = .85± .07 averaged over the
five questions.

This can be compared with the MDSM evaluation by Rodŕıguez and Egenhofer
[50]. The MDSM approach was tested on a geographic ontology derived from the
combination of definitions in WordNet and in the Spatial Data Transfer Standard
(SDTS). This ontology contains formal knowledge carefully encoded by experts,
including parts, functions, and attributes [13, 39]. A comparison between the re-
sults of the two approaches is reported in Table 4.

These results indicate that, notwithstanding the lack of rich formal semantics
in OSM, it is possible to extract a plausible semantic similarity measure from
its crowdsourced semantic network, matching closely the performance obtained
on a knowledge-rich formal ontology such as WordNet and SDTS. Based on the
collected evidence, we deem that SimRank on the OSM Semantic Network offers
a viable tag-to-tag semantic similarity measure for OSM data.

7 Conclusions and future work

In this article we have presented a contribution to applied knowledge-based sys-
tems in the geographic domain, particularly in the area of Volunteered Geographic
Information and OpenStreetMap. We have presented (i) the development of the
OSM Semantic Network by means of a web crawler tailored on the OSM Wiki web-
site; (ii) a study on the cognitive plausibility of co-citation measures to compute
semantic similarity of geographic classes in the OSM Semantic Network. Based on
the results obtained, the following conclusions can be drawn:

• The OSM Semantic Network24 captures meaningful relationships between ge-
ographic concepts in OSM, providing a semantic tool for information retrieval,
information integration, and data mining. As the OSM Wiki website changes,
the crawler enables the regular extraction of an up-to-date graph over time.

23 http://github.com/ucd-spatial/Datasets (acc. August 10, 2012)
24 http://wiki.openstreetmap.org/wiki/OSMSemanticNetwork (acc. August 10, 2012)
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• In a semantic network presenting a dense link structure, semantic similarity of
concepts can be computed through co-citation algorithms. Such an approach
can be successfully applied to compute semantic similarity of geographic classes
in the OSM Semantic Network.

• The co-citation algorithms appear cognitively plausible, showing a positive cor-
relation with human judgement. In particular, SimRank obtains the highest
plausibility (ρ̄ = .85 ± .07) over Small’s co-citation, Amsler, Coupling, rsv-
SimRank, and P-Rank. This result closely matches the MDSM algorithm ap-
plied to WordNet/SDTS classes [50].

• In the context of the OSM Semantic Network, co-citation algorithms consis-
tently obtain a higher plausibility when assuming that concepts are similar
when ‘they are referenced by similar entities’, than when ‘they reference simi-
lar entities’ [62].

The results presented in this paper suggest several research directions. Firstly,
the tag-to-tag similarity measure extracted from the OSM Semantic Network can
be integrated into a comprehensive OSM similarity framework, enabling an object-
to-object metric. An OSM semantic similarity measure should combine network
similarity, as well as text similarity, and geospatial similarity (geo-location and
area). The similarity framework formalised by Janowicz et al. [27] can provide
solid theoretical grounds.

OSM is far from being the only crowdsourced project modelling general ge-
ographic concepts. Notable cases are DBpedia, GeoWordNet, and GeoNames25

[7, 41, 17]. Co-citation measures in these knowledge bases can be utilised not only
to assess the cognitive plausibility of similarity measures, but also to support in-
formation integration [6], and knowledge extraction [23]. As a starting point for
future work towards the automatic extension and integration with the Semantic
Geospatial Web, our OSM Semantic Network is linked to Wikipedia and Linked-
GeoData.

From a cultural perspective, this work is focused on the English parts of the
OSM Wiki, introducing a typical Anglo-American bias. One of the key aspects
of OSM is the possibility to map local features, which are directly relevant to its
contributors, resulting in diverse national and regional communities [34]. In this
context, it would be easy to extend the OSM Wiki Crawler to include the numer-
ous non-English pages of the OSM Wiki.26 Co-citation measures are language-
independent by definition, and could be applied to the non-English concepts of
OSM in a way analogous to that presented in this paper.

Finally, the results described in Section 6.2 highlight a striking difference of
cognitive plausibility of co-citation techniques when considering incoming or out-
going links. This indicates that the OSM Wiki contributors have a tendency to
cite similar classes together, rather than cite the same class from similar classes.
This behaviour might be related to missing links between concepts, which have
been detected in Wikipedia [1]. To what degree this phenomenon is generalisable
to other contexts is an open question that deserves further investigation, as it
would enable a better understanding of how similarity flows across the edges of
crowdsourced semantic networks.

25 http://www.geonames.org (acc. August 10, 2012)
26 http://wiki.openstreetmap.org/wiki/Category:Projects_by_country (acc. August 10,

2012)
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We believe that investigating crowdsourced semantic networks for geographic
knowledge will provide valuable contributions to GIScience, and in particular to
the VGI field. In this article we have described the development of the OSM
Semantic Network, evaluating the cognitive plausibility of co-citation measures.
This approach has shown a generally high cognitive plausibility, mimicking human
rankings of geographic concepts, and can be applied in geographic recommender
systems, data mining, location-based services, and in – now unforeseeable – novel
neogeographic web applications.
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