

Provided by the author(s) and University College Dublin Library in accordance with publisher policies. Please cite the published version when available.

Title	Optical wave propagation simulation, Wigner phase-space diagrams, and wave energy confinement
Author(s)	Rhodes, William T.; Sheridan, John T.; Hennelly, Bryan M.
Publication date	2005-10-16
Publication information	Frontiers in Optics, OSA Technical Digest Series
Conference details	Paper presented at Frontiers in Optics (FiO), Tucson, Arizona, October 16, 2005
Publisher	Optical Society of America
Link to online version	http://www.opticsinfobase.org/abstract.cfm?URI=FiO-2005- FTuM4
Item record/more information	http://hdl.handle.net/10197/3475
Publisher's statement	This paper was published in Frontiers in Optics and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/abstract.cfm?uri=FiO- 2005-FTuM4. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.

Downloaded 2018-10-21T09:06:18Z

The UCD community has made this article openly available. Please share how this access benefits you. Your

story matters! (@ucd_oa) 🔰

Some rights reserved. For more information, please see the item record link above.

FTuM4

Optical wave propagation simulation, Wigner phase-space diagrams, and wave energy confinement

William T. Rhodes

Georgia Institute of Technology, Atlanta, Georgia 30332-0250 USA wrhodes@ece.gatech.edu John T. Sheridan and Bryan M. Hennelly University College of Dublin, Dublin, Ireland

Abstract: The number of samples required for efficient numerical simulation of wave propagation can be determined by a combination of Wigner phase-space techniques, wave energy confinement arguments, and a theorem relating energy confinement to accuracy.

© 2005 Optical Society of America

OCIS Codes: (050.1940) Diffraction; (070.2580) Fourier optics

The number N of samples u_n required for numerical simulation of the propagation of a monochromatic optical wave u(x) is often expressed in terms of the space-bandwidth product of the wave [1],

$$N = W_o B_o, \tag{1}$$

where $u(x) \equiv 0$ for $|x| \ge W_o/2$ and $U(v) \equiv 0$ for $|v| \ge B_o/2$, with $U(v) = \int u(x) \exp(-i2\pi vx) dx$, the Fourier transform of u(x) (one-dimensional notation is used, extensions to two dimensions being straight-forward).

There are two difficulties associated with Eq. (1) and its application: (a) the definitions of W_o and B_o generally lack precision, especially since it is mathematically impossible for both u(x) and U(v) to have compact support; and (b) the effect of too few samples, as manifested by aliasing in the reconstruction of u(x) from a set of discrete samples, is difficult to quantify. Propagation of u(x) introduces additional complications since, through diffraction, it leads to a spreading of the wave—and, thus, to an increase in spatial extent W(z) —that is often difficult to quantify. As noted in Ref. [1], the Wigner phase-space diagram can provide insight into the spreading of a wave as it propagates, but it does not provide a clear means for specifying the sample rate and number of samples appropriate for a given wave u(x) and propagation distance z.

This paper has two objectives: (1) to provide means for selecting W_o and B_o in Eq. (1) that relates quantitatively to errors in the reconstruction of u(x) from its sample values, and (2) to present a means for specifying the number of samples N(z) required for numerical propagation of u(x) through distance z, for $z_1 < z < z_2$, in the case where $|u(x, z_1)|$ and $|u(x, z_2)|$ are both known.

The paper proceeds as follows. First, the width W_o and spatial frequency bandwidth B_o of wave u(x) are defined in terms of a fraction-of-signal-energy metric η . Next, it is shown that the fractional mean-square error in the continuous reconstruction $\tilde{u}(x)$ obtained from signal samples u_n is expressible in terms of η . Bounds on $\eta(z)$ are then established for propagation distance z satisfying $z_1 \le z \le z_2$, first for a special "light tube" case [2], then for a general case. The application of the energy-confining "light tube" to efficient numerical simulation of wave propagation is then discussed.

^[1] A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, and C. Ferreira, "Space-bandwidth product of optical signals and systems," J. Opt. Soc. Am. A, Vol. 13, pp. 470-473 (1996).

^[2] William T. Rhodes, "Light Tubes, Wigner Diagrams, and Optical Wave Propagation Simulation," in *Optical Information Processing: A Tribute to Adolf Lohmann*, H. John Caulfield, Editor (SPIE Press, Bellingham, 2002), Chapter 15 (pp. 343-356).